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Abstract Kernel selection is one of the key issues both in recent research and application of kernel methods.

This is usually done by minimizing either an estimate of generalization error or some other related performance

measure. Use of notions of stability to estimate the generalization error has attracted much attention in recent

years. Unfortunately, the existing notions of stability, proposed to derive the theoretical generalization error

bounds, are difficult to be used for kernel selection in practice. It is well known that the kernel matrix contains

most of the information needed by kernel methods, and the eigenvalues play an important role in the kernel

matrix. Therefore, we aim at introducing a new notion of stability, called the spectral perturbation stability,

to study the kernel selection problem. This proposed stability quantifies the spectral perturbation of the kernel

matrix with respect to the changes in the training set. We establish the connection between the spectral

perturbation stability and the generalization error. By minimizing the derived generalization error bound, we

propose a new kernel selection criterion that can guarantee good generalization properties. In our criterion,

the perturbation of the eigenvalues of the kernel matrix is efficiently computed by solving the derivative of a

newly defined generalized kernel matrix. Both theoretical analysis and experimental results demonstrate that

our criterion is sound and effective.
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1 Introduction

Kernel methods [1,2] have been successfully used in pattern recognition and machine learning. Since

the performance of kernel methods greatly depends on the selection of the kernel function, the kernel

selection problem becomes an important topic in kernel methods [3–5].

It is common to select the optimal kernel function by choosing the one with the lowest generalization

error [3]. Obviously, the generalization error is not directly computable, as the probability distribution

generating the data is unknown. The generalization error can be estimated via either a theoretical bound

or testing error on some unused data (hold-out testing or cross validation) [3]. To derive the theoretical

upper bounds of the generalization error, some measures are introduced: VC dimension [1], Rademacher

complexity [6], covering number [7,8], regularized risk [9], radius-margin bound [1], compression coefficient
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[10], eigenvalues perturbation [11], etc. Minimizing an empirical estimate of the generalization error is

an alternative for kernel selection in practice. Cross-validation (CV) and leave-one-out (LOO) cross-

validation [3,12] are two popular empirical estimates. However, CV and LOO require multiple times

of training the algorithm under consideration, which are computationally intensive. For the sake of

efficiency, some approximate CV and LOO criteria are introduced: span bound [3], influence function

[13], Bouligand influence function [14], etc. Nyström methods [15] and multilevel circulant matrices [16]

are used to approximate the kernel matrix to expedite the CV process.

Based on the similarity, Cristianini et al. [17] present a new kernel selection criterion called the kernel

target alignment (KTA). Similar to KTA, Cortes et al. [18] present a centered kernel target alignment

criterion (CKTA) using the centered kernel matrix, which gives better performance in experiments.

Nguyen and Ho [19] point out several drawbacks of the KTA, and propose a surrogate measure (called

FSM) to evaluate the goodness of a kernel function via the data distribution in the feature space. Although

KTA, CKTA and FSM are widely used, the connections between these criteria and the generalization

error for specific learning algorithms have not been established; hence so the kernels chosen by these

criteria may not guarantee good generalization performance.

In recent years, using the notions of stability to derive the generalization error bounds has attracted

much attention. Rogers and Wagner [20] first consider this idea to obtain error bounds. Kearns and Ron

[21] investigate it further and introduce several measures of stability formally. Bousquet and Elisseeff

[22] obtain exponential bounds under restrictive conditions on the algorithm, using the notion of uniform

stability. These conditions are relaxed by Kutin and Niyogi [23]. The link between stability and consis-

tency of the empirical error minimizer is studied by Poggio et al. [24]. Cortes et al. [25] use the notion

of algorithmic stability to derive novel generalization error bounds for several families of transductive

regression algorithms. The link between learnability, stability and uniform convergence is studied by

Shalev-Shwartz et al. [26]. Cortes et al. [27] propose the stability bounds based on the norm of the

kernel approximation.

Unfortunately, most of the existing notions of stability, proposed to derive the theoretical generaliza-

tion error bounds, are very difficult to be used for kernel selection in practice. In this article, we aim

at presenting a kernel selection criterion, based on a new notion of stability, called spectral perturbation

stability. This proposed stability quantifies the spectral perturbation of the kernel matrix when removing

one example from the training set. Different from the existing notions of stability, our spectral pertur-

bation stability is defined on the kernel matrix. Therefore, we can compute the value of the spectral

perturbation stability for any given kernel function from empirical data, which makes it usable for ker-

nel selection. Specifically, we first use spectral perturbation stability to derive the generalization error

bounds. Then, to guarantee good generalization performance, we propose the new kernel selection crite-

rion by minimizing the derived generalization error bounds. In our proposed criterion, the perturbation

of the eigenvalues of the kernel matrix is efficiently computed by solving the derivative of a newly defined

generalized kernel matrix. Experimental results show that the kernel selected by our proposed criterion

gives better results than those chosen by KTA, CKTA, FSM and CV.

The rest of the article is organized as follows. In Section 2, we introduce some notations and prelim-

inaries. In Section 3, we present a new notion of stability, and use this notion to derive generalization

error bounds. In Section 4, we propose a kernel selection criterion by minimizing the derived generaliza-

tion error bounds. In Section 5 we empirically analyze the performance of our proposed SPS criterion

compared with four popular criteria (KTA, CKTA, FSM and 10-CV). Finally, Section 6 concludes this

article.

2 Preliminaries

Given a training set S = {zi = (xi, yi)}
m
i=1 of size m drawn identically and independently from an

unknown distribution P on Z = X ×Y. Let K : X ×X → R be a kernel function, that is, K is symmetric

and for any finite set of points {x1, . . . ,xm} ⊂ X , the kernel matrix K = [K(xi,xj)]
m
i,j=1 is positive

semidefinite. The reproducing kernel Hilbert space HK associated with the kernel K is defined to be the
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completion of the linear span of the set of functions {Kx = K(x, ·) : x ∈ X} with the inner product

denoted as 〈·, ·〉K satisfying 〈Kx,Ky〉K = K(x,y).

The learning algorithm we study here is the regularized least squares algorithm:

fS = argmin
f∈HK

{

1

m

m
∑

i=1

ℓ(f, zi) + λ‖f‖2K

}

, (1)

where ℓ(f, zi) = (f(xi) − yi)
2 is the squared loss function, λ is the regularized parameter, and fS is the

solution of the regularized least squares algorithm with respect to the training set S.

We will consider measuring the performance of the regularized least squares algorithm. The main

quantity we are interested in is the risk or generalization error which is a random variable depending

on the training set S and is defined asR(S) = Ez [ℓ(fS, z)], where Ez [·] is the expectation when z is sampled

according to P . Unfortunately, R(S) cannot be computed since the probability distribution P is unknown.

Thus, we consider estimating it using the empirical error Remp(S) defined as Remp(S) =
1
m

∑m
i=1 ℓ(fS , zi).

3 Generalization error bounds

In this section, we first introduce the spectral perturbation stability, and then use this stability to derive

the generalization error bounds.

3.1 Spectral perturbation stability

It is well known that the kernel matrix contains most of the information needed by the regularized least

squares algorithm [19], and its eigenvalues play a central role in the kernel matrix. Therefore, we introduce

a new notion of stability to quantify the perturbation of eigenvalues of the kernel matrix with respect to

the changes in the training set for kernel selection.

To this end, we build the ith removed training set Si = {z1, . . . , zi−1, zi+1, . . . , zm}. Let Ki be the

m×m ith removed kernel matrix with
{

[Ki]jk = K(xj ,xk), if j 6= i and k 6= i,

[Ki]jk = 0, if j = i or k = i.

Denote the eigenvalues of K and Ki as σj(K) and σj(K
i), respectively. Note that K and Ki are both

positive semidefinite matrices; thus, σ1(K) > . . . > σm(K) > 0 and σ1(K
i) > . . . > σm(Ki) > 0.

Definition 1. The kernel function K is of β spectral perturbation stability if the following holds:

∀S = {zi = (xi, yi)}
m
i=1 ∈ Zm and ∀i, j ∈ {1, . . . ,m},

∣

∣σj(K)− σj(K
i)
∣

∣ 6 β.

According to the above definition, the spectral perturbation stability is used to quantify the spectral

perturbation of the kernel matrix when removing an example in the training set. Different from the

existing notions of stability, see, e.g., [20–26] and the references therein, our proposed stability is defined

on the kernel matrix. Therefore, we can estimate its value from empirical data, which makes this stability

usable for kernel selection in practice.

3.2 Generalization error bounds with spectral perturbation stability

We assume ∀y ∈ Y, |y| 6 M and supx∈X K(x,x) = κ. To obtain the generalization error bound, we first

prove the following theorem.

Theorem 1. Assume the training set S = {(xi, y)}
m
i=1. If the kernel function K is of β spectral

perturbation stability, then ∀i ∈ {1, . . . ,m}, ‖fS − fSi‖∞ 6
C(β+2λ)

m−1 , where C = κM
λ2 , fS and fSi are the

solutions of the regularized least squares algorithm with respect to S and Si, respectively.

Proof. The proof of this theorem is given in Appendix A.

This theorem shows that the spectral perturbation stability implies the stability of fS , and the ‖fS −

fSi‖∞ is tight when the spectral perturbation stability β is small.
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Using the above theorem, we can obtain the generalization error bound.

Theorem 2. Assume the training set S = {(xi, yi)}
m
i=1. If the kernel function K is of β spectral

perturbation stability, then for the regularized least squares algorithm, with probability 1− δ, we have

R(S) 6 Remp(S) + 2F (β + 2λ) + C2(β + 2λ)2 +
(

F (β + 2λ) + C2(β + 2λ)2 +Q
)

√

ln 1/δ

2m
,

where C = κM
λ2(m−1) , Q = 2κ2M2

λ2 + 2M2 and F = 2κM2

λ2(m−1) .

Proof. The proof of this theorem is given in Appendix B.

To guarantee good generalization performance, we should choose the kernel function with low gener-

alization error R(S). However, the R(S) is not directly computable. The above theorem shows that we

can choose the kernel function by minimizing the Remp(S) + β to restrict the value of R(S) to guarantee

good generalization performance.

4 Kernel selection criterion

In this section, we will present a kernel selection criterion based on the spectral perturbation stability,

and present a strategy for fast calculation of the perturbation of the eigenvalues.

4.1 Spectral perturbation stability criterion

According to the Theorem 2, to guarantee good generalization performance, we should select the kernel

with the lowest Remp(S)+β. However, by the definition of the β spectral perturbation stability, we need

to try all the possibilities of the training set to compute β, which is infeasible in practice. We should

estimate it from the available empirical data S. Therefore, we consider using the following spectral

perturbation stability criterion:

SPS(K) = Remp(S) +
1

m2

m
∑

j=1

m
∑

i=1

∣

∣σj(K)− σj(K
i)
∣

∣ , (2)

where Remp(S) is the empirical error, σj(K) and σj(K
i) are the eigenvalues of the kernel matrix K and

the ith removed kernel matrix Ki, respectively.

To compute the value of this criterion, we should compute the eigenvalues perturbation of kernel

matrix
∑m

j=1

∑m
i=1

∣

∣σj(K)− σj(K
i)
∣

∣, which requires the calculation of the eigenvalues of K and Ki,

i = 1, . . . ,m, respectively. The computing cost is too high.

Fortunately, we will show that
∑m

j=1

∑m
i=1

∣

∣σj(K)− σj(K
i)
∣

∣ can be computed by solving the derivative

of a newly defined generalized kernel matrix (see Definition 2), which reduces the times of computation

of the eigen-system from m+ 1 to 1.

4.2 A strategy for fast calculation of the spectral perturbation

We will give a strategy for fast calculation of
∑m

j=1

∑m
i=1

∣

∣σj(K)− σj(K
i)
∣

∣. To this end, we give the

definition of the generalized kernel matrix first.

Definition 2 (generalized kernel matrix). Assume that the training set S = {(xi, yi)}
m
i=1. Let D be

the m×m diagonal matrix with [D]ii = K(xi,xi). For each i ∈ {1, . . . ,m}, let Ci be the m×m matrix

with [Ci]jk = 0 if j 6= i and k 6= i, [Ci]jk = K(xj ,xk) if j = i or k = i. The generalized kernel matrix

K(w) is defined as K(w) =
∑m

i=1 wiC
i + 1

2D, where the parameters w = (w1, . . . , wm)T ∈ R
m.

Note that K(w) =



















K if w =
1

2
=

(

1

2
,
1

2
, . . . ,

1

2

)T

,

Ki if w =

(

1

2
, . . . ,

1

2
,−

1

2
,
1

2
, . . . ,

1

2

)T

,
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where w = (12 , . . . ,
1
2 ,−

1
2 ,

1
2 , . . . ,

1
2 )

T denotes that the i-th element is − 1
2 , others

1
2 . Therefore, the kernel

matrix K and the ith removed kernel matrix Ki can be seen as the special cases of the K(w).

Consider the eigen-system of K(w):

K(w)q(w)j = σ(w)jq(w)j , (3)

where q(w)j = (q(w)j1, . . . , q(w)jm)T and σ(w)j , respectively, denote the jth eigenvector and jth eigen-

value of K(w), {q(w)j}
m
j=1 are orthonormal.

Loosely speaking, the derivative of σ(w)j with respect to wi, that is
∂σ(w)j
∂wi

, can be thought as how

much the jth eigenvalue changed in response to the change of the ith parameter wi [28]. We consider the

differential dσ(w)j of σ(w)j at wi, which is expressed as

dσ(w)j =

(

∂σ(w)j
∂wi

)

dwi. (4)

Specifically, when w = (12 ,
1
2 , . . . ,

1
2 )

T and dwi = 1
2 − (− 1

2 ) = 1, the corresponding change of the jth

eigenvalue can be approximated as follows

∆σ(i)j ≈

(

∂σ(w)j
∂wi

|w = (
1

2
, . . . ,

1

2
)

)

. (5)

The equation (5) just reveals the change of the jth eigenvalue when the K changes to Ki. Therefore, we

can employ equation (5) to evaluate (σj(K)− σj(K
i)). Equation (5) is the first order approximation of

Taylor expansion. This approximation error can be bounded by the residue terms. Thus, we employ the

following criterion for kernel selection: SPS(K) = Remp(S) +
1

m2

∑m
j=1

∑m
i=1 |∆σ(i)j | , where ∆σ(i)j =

(

∂σ(w)j
∂wi

|w = (12 , . . . ,
1
2 )
)

.

To compute the SPS(K), we should calculate the derivative of σ(w)j with respect to the parameter

wi. Jiang and Ren [28] present a method to calculate the derivative of eigenvalues of Laplacian matrix

with respect to the feature weight coefficient. We extend their method to the generalized kernel matrix

for calculating
∂σ(w)j
∂wi

:

Theorem 3. The calculation of
∂σ(w)j
∂wi

is formulated as

∂σ(w)j
∂wi

= 2q(w)jiq(w)Tj ki − q(w)2jiK(xi,xi), (6)

where ki = (K(xi,x1), . . . ,K(xi,xm))T.

Proof. By differentiating both sides of K(w)q(w)j = σ(w)jq(w)j with respect to weight coefficient wi,

we have
∂K(w)

∂wi
q(w)j +K(w)

∂q(w)j
∂wi

=
∂σ(w)j
∂wi

q(w)j + σ(w)j
∂q(w)j
∂wi

.

Multiply both sides of the above equation by q(w)Tj :

q(w)Tj
∂K(w)

∂wi
q(w)j + q(w)Tj K(w)

∂q(w)j
∂wi

=
∂σ(w)j
∂wi

q(w)Tj q(w)j + σ(w)jq(w)Tj
∂q(w)j
∂wi

.

Since K(w) is symmetric and K(w)q(w)j = σ(w)jq(w)j , it is easy to verify that

q(w)Tj K(w)
∂q(w)j
∂wi

= σ(w)jq(w)Tj
∂q(w)j
∂wi

.

According to the above two equations, we have
∂σ(w)j
∂wi

=
q(w)Tj

∂K(w)
∂wi

q(w)j

q(w)Tj q(w)j
. Hence, {q(w)j}

m
j=1 are or-

thonormal and
∂σ(w)j
∂wi

= q(w)Tj
∂K(w)
∂wi

q(w)j .

Note that K(w) =
∑m

i=1 wiC
i + 1

2D, so we have ∂K(w)
∂wi

= Ci. By the definition of Ci, it is easy to

verify that
∂σ(w)j
∂wi

= 2q(w)jiq(w)Tj ki − q(w)2jiK(xi,xi). Thus, the theorem is proved.

From the above theorem, we only need to compute the eigen-system of the kernel matrix once to

compute the SPS(K).
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4.3 Time complexity analysis

To compute the spectral perturbation stability criterion SPS(K), we needO(m3) to calculate the empirical

error Remp(S) and to calculate the eigen-system of the kernel matrix, and need O(m2) to calculate the

derivatives of eigenvalues, where m is the size of the training set. Thus, the overall time complexity of

SPS(K) is O(2m3 +m2).

Remark 1. Instead of choosing a single kernel, some researchers consider combining multiple kernels

by some criteria, called multiple kernel learning (MKL), see, e.g., [12,18] and the references therein. Our

criterion can be used for MKL. However, in this paper, we mainly want to verify the effectiveness of

spectral perturbation stability criterion.

5 Experiments

In this section, we will empirically analyze the performance of our proposed SPS criterion compared

with four popular kernel selection criteria: KTA [17], CKTA [18], FSM [29] and 10-fold cross validation

(10-CV). The learning algorithm we use here is the regularized least squares algorithm. Experiments are

performed on a Dell Vestro PC with 3.4-GHz CPU and 8-GB memory.

The evaluation is made on 10 public available datasets from LIBSVM Data1) seen in Table 1. All

datasets are normalized to have zero-means and unit-variances on every attribute to avoid numerical

problems caused by large-value kernel matrices.

We use Gaussian kernels KGauss(x,x
′) = exp

(

−τ‖x− x′‖22
)

and polynomial kernels KPloy(x,x
′) =

(1 + x · x′)d as our candidate kernels: 20 Gaussian kernels with τ ∈ {2i, i = −10,−9, . . . , 9} and 20

polynomial kernels with degree d ∈ {1, 2, . . . , 20}. The regularization parameter λ ∈ {0.01, 0.1, 1, 10}.

For each data set, we have run all the methods 20 times with random partition of the datasets (50% of

all the examples for training and the other 50% for testing).

5.1 Accuracy

The average test accuracies are reported in Table 1. The elements in this table are obtained as follows.

For each training set, each regularized parameter λ, we choose the kernel by each kernel selection criterion

on the training set, and evaluate the test accuracies of the chosen parameters on the test set. Then, we

compute the means over all runs on the different partitions. The SPS criterion is proposed to choose the

kernel function, not the regularization parameter λ; therefore, we do not select this value but report the

results under different λ in our experiments. The results in Table 1 can be summarized as follows: (a) SPS

is much better than KTA, CKTA and FSM on nearly all datasets. This can be explained by the fact that

the connections between these three criteria and generalization error for the regularized least squares

algorithm has not been established, such that the kernels chosen by these criteria may not guarantee

good generalization performance. (b) SPS is comparable or better than 10-CV on most datasets. (c) The

accuracies of the SPS do not depend much on the size of the data sets. Besides experiments on random

evenly split datasets, we also have run our method with 70% examples for training and the other 30%

for testing, the results turn out to be similar with each other. The above results imply that the influence

of the amount of examples is not very large.

Therefore, it implicates that choosing the kernel based on the spectral perturbation stability can

guarantee good generalization.

The highest test accuracies for each kernel selection criterion in Table 1 are reported in Figure 1. We

can observe that SPS gives the best results on most of the datasets. In particular, SPS outperforms

KTA, CKTA and FSM on all the datasets. SPS outperforms 10-CV on 6 (or more) out 10 sets (Breast,

Diabetes, Guide, Heart, Sonar and Ionosphere), and also give results close to 10-CV on the remaining

datasets.

1) http://www.csie.ntu.edu.tw/∼cjlin/libsvm.
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Table 1 The test accuracies (%) with standard deviations using different λ

λ = 0.01

Method #Example SPS KTA CKTA CV FSM

Australian 690 83.48 ± 1.83 72.61 ± 1.67 75.62 ± 2.09 83.77 ± 1.30 74.94 ± 1.76

Breast 683 97.36 ± 0.59 91.60 ± 0.67 91.52 ± 0.86 95.42 ± 1.02 93.51 ± 0.88

Diabetes 768 69.07 ± 1.86 63.75 ± 1.84 64.04 ± 1.92 70.94 ± 2.02 64.70 ± 2.90

German 1000 70.18 ± 1.71 66.45 ± 1.78 67.05 ± 1.66 66.19 ± 2.00 65.42 ± 1.85

Guide 1284 77.65 ± 1.28 71.72 ± 1.38 72.65 ± 1.36 75.62 ± 2.47 65.29 ± 1.22

Heart 270 78.96 ± 3.54 76.80 ± 3.62 77.19 ± 3.58 79.00 ± 4.23 74.80 ± 3.54

Liver 345 62.13 ± 3.06 59.87 ± 3.46 61.14 ± 3.92 61.74 ± 3.23 61.74 ± 3.23

Sonar 208 90.38 ± 3.25 80.38 ± 3.18 82.38 ± 3.25 85.06 ± 9.64 84.36 ± 6.64

Splice 3175 80.84 ± 1.33 71.27 ± 1.52 72.20 ± 3.57 82.00 ± 1.52 74.90 ± 3.57

Ionosphere 351 90.86 ± 2.93 86.49 ± 2.80 86.50 ± 2.93 88.78 ± 3.14 86.51 ± 2.92

λ = 0.1

Method #Example SPS KTA CKTA CV FSM

Australian 690 84.93 ± 1.66 73.90 ± 2.03 76.23 ± 1.82 85.71 ± 1.68 78.49 ± 2.03

Breast 683 96.33 ± 0.84 89.26 ± 0.93 90.13 ± 0.84 95.98 ± 0.63 88.25 ± 0.84

Diabetes 768 69.32 ± 1.46 62.36 ± 2.31 63.04 ± 1.89 68.55 ± 1.58 57.60 ± 2.46

German 1000 69.96 ± 2.04 63.36 ± 1.42 65.21 ± 1.95 71.55 ± 1.68 64.15 ± 4.79

Guide 1284 73.83 ± 1.58 63.44 ± 1.59 66.25 ± 1.58 69.14 ± 1.63 63.62 ± 1.65

Heart 270 81.58 ± 3.29 75.80 ± 3.62 77.01 ± 2.93 79.05 ± 2.87 75.81 ± 3.03

Liver 345 60.33 ± 3.43 56.47 ± 4.22 57.38 ± 5.44 61.12 ± 4.24 51.10 ± 4.28

Sonar 208 85.71 ± 3.20 75.68 ± 4.77 78.10 ± 3.20 83.49 ± 7.57 78.72 ± 4.52

Splice 3175 82.84 ± 1.72 71.27 ± 2.20 72.55 ± 3.45 83.84 ± 2.52 69.79 ± 2.57

Ionosphere 351 85.85 ± 2.31 80.57 ± 2.30 80.21 ± 2.52 82.37 ± 2.71 79.18 ± 3.82

λ = 1

Method #Example SPS KTA CKTA CV FSM

Australian 690 81.60 ± 1.34 71.90 ± 2.45 74.32 ± 1.32 80.51 ± 1.27 73.53 ± 2.45

Breast 683 93.66 ± 0.93 91.26 ± 0.94 91.13 ± 0.52 96.98 ± 0.93 87.40 ± 3.36

Diabetes 768 71.09 ± 2.06 67.36 ± 2.10 66.56 ± 2.06 69.09 ± 2.28 64.29 ± 2.10

German 1000 65.20 ± 1.99 61.36 ± 1.58 61.66 ± 2.30 64.12 ± 2.15 58.09 ± 2.13

Guide 1284 70.28 ± 1.38 61.34 ± 1.45 62.31 ± 1.39 72.89 ± 1.79 63.99 ± 1.45

Heart 270 75.56 ± 4.20 73.80 ± 4.41 72.32 ± 5.15 73.41 ± 4.87 69.68 ± 4.41

Liver 345 54.38 ± 3.75 51.32 ± 3.64 53.72 ± 4.28 55.32 ± 3.65 51.32 ± 3.64

Sonar 208 76.92 ± 3.81 66.68 ± 3.77 68.11 ± 3.81 73.19 ± 5.39 69.81 ± 5.54

Splice 3175 72.64 ± 2.27 61.03 ± 2.20 63.40 ± 3.08 72.47 ± 2.46 62.22 ± 2.28

Ionosphere 351 83.71 ± 2.52 72.57 ± 3.47 74.61 ± 2.52 81.37 ± 2.71 73.16 ± 3.47

λ = 10

Method #Example SPS KTA CKTA CV FSM

Australian 690 77.97 ± 2.01 65.20 ± 2.51 64.64 ± 3.28 79.96 ± 2.78 69.68 ± 2.49

Breast 683 92.38 ± 1.39 88.26 ± 1.73 89.07 ± 0.72 93.68 ± 0.67 88.73 ± 2.27

Diabetes 768 64.58 ± 2.82 58.36 ± 2.67 58.96 ± 2.93 59.10 ± 2.82 54.32 ± 2.67

German 1000 61.20 ± 1.59 60.36 ± 1.58 58.22 ± 1.58 58.29 ± 1.61 58.21 ± 1.63

Guide 1284 68.79 ± 1.34 63.55 ± 1.35 64.66 ± 1.30 67.85 ± 1.34 57.97 ± 1.35

Heart 270 68.52 ± 3.58 56.61 ± 3.41 57.11 ± 4.08 68.02 ± 4.31 55.65 ± 3.71

Liver 345 54.38 ± 3.75 52.32 ± 3.64 53.72 ± 4.28 53.32 ± 3.65 51.32 ± 3.64

Sonar 208 66.73 ± 4.18 56.68 ± 3.87 58.97 ± 4.18 60.25 ± 4.89 59.93 ± 6.24

Splice 3175 64.57 ± 2.24 61.46 ± 2.35 62.40 ± 3.48 64.64 ± 2.24 59.57 ± 2.96

Ionosphere 351 72.86 ± 3.34 63.57 ± 3.47 64.84 ± 3.24 68.86 ± 3.27 63.39 ± 3.00
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Figure 1 Comparison among SPS, KTA, CKTA, FSM and 10-CV criteria. The highest test accuracies for each kernel

selection criterion in Table 1.

6 Conclusion

In this paper, we propose a new kernel selection criterion based on the spectral perturbation stability,

which quantifies the spectral perturbation of the kernel matrix with respect to the changes in the training

set. This criterion is theoretically justified and obtain good results in practice. We believe that our

analysis opens new perspectives on the application of the stability to practical problem.

We can extend the results of Theorem 2 to SVM via the similar proof of the regularized least

squares algorithm. We have obtained the generalization error bound for SVM: R(S) 6 Remp(S) +
√

Q2+6Qmβ
1
4 (1+(β/(2κ))

1
4 )

2mδ , where C and Q are some constants. Our criterion can also be applied to

MKL: maxµ=(µ1,...,µk) SPS(Kµ), s.t.‖µ‖p = 1,µ > 0, where Kµ =
∑k

i=1 µiKi. This optimization can be

efficiently solved by the projected gradient algorithm similar to our previous work [12].

Future work will use the Nyström methods to speed up our proposed criterion, and extend this criterion

to other kernel based method (such as SVM, LSSVM), and apply this criterion for multiple kernel learning.
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Appendix A Proof of Theorem 1

Proof. Denote the vectors k, ki, y and yi as k = (K(x,x1),K(x,x2) . . . ,K(x,xn))
T,ki = (K(x,x1), . . . ,

K(x,xi−1),K(x,xi+1), . . . ,K(x,xm))T,y = (y1, y2, . . . , ym)T,yi = (y1, . . . , yi−1, yi+1, . . . , ym)T, respectively.

Let Ki be the (m − 1) × (m − 1) kernel matrix with respect to the ith removed training set Si with [Ki]j,k =

K(xj ,xk),xj ,xk ∈ Si.

The solutions of the regularized least squares algorithm with respect to the training sets S and Si can be,

respectively, written as fS(x) = kT(K +mλI)−1y, fSi(x) = kT
i (Ki + (m− 1)λIi)

−1yi, where I and Ii are the

m×m and (m− 1) × (m− 1) identity matrices, respectively.

According to the definition of the ith removed kernel matrix Ki, it is easy to verify that the fSi(x) can be

written as

fSi(x) = k
T
(

(Ki + (m− 1)λI)−1 −Ai

)

y,

where Ai = diag(0, . . . , 0, 1/ ((m− 1)λ) , 0, . . . , 0) is a diagonal matrix, with the ith diagonal element 1/((m−1)λ),

others 0.

Let G = K +mλI and Gi = Ki + (m− 1)λI, we can obtain that

fS(x)− fSi(x) = k
T
Aiy + k

T(G−1 −G
−1
i )y.
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Note that M ′−1 −M−1 = −M ′−1(M ′ −M)M−1 is valid for any invertible matrices M and M ′. Therefore,

G
−1 −G

−1
i = −G

−1
(

K −K
i + λI

)

G
−1
i ,

Thus, we can obtain that

‖(G−1 −G
−1
i )y‖ 6 ‖K −K

i + λI‖‖y‖‖G−1‖‖G−1
i ‖

6
‖K −Ki + λI‖‖y‖
λmin(G)λmin(Gi)

6
‖K −Ki‖‖y‖+ ‖λI‖‖y‖

λmin(G)λmin(Gi)
,

where λmin(G) and λmin(Gi) are the smallest eigenvalue of G and Gi, respectively. Thus, we have

|fS(x)− fSi(x)| = |kT
Aiy + k

T(G−1 −G
−1
i )y| 6 ‖k‖‖(G−1 −G

−1
i )y‖+ |kT

Aiy|

6
‖k‖‖K −Ki‖‖y‖ + ‖k‖‖λI‖‖y‖

λmin(G)λmin(Gi)
+

∣

∣

∣

∣

K(x,xi)yi
(m− 1)λ

∣

∣

∣

∣

.

Hence the fact that λmin(G) and λmin(Gi) are larger than or equal to mλ and (m− 1)λ. Note that ‖y‖ 6
√
mM

and ‖k‖ 6
√
mκ; therefore, we have

|fS(x)− fSi(x)| 6 κM‖K −Ki‖
λ2(m− 1)

+
κM

(m− 1)λ
+

κM

(m− 1)λ
.

Denote the diagonal matrix Λ as Λ = diag(λ1(K), . . . , λm(K)). Note the fact that

‖K −K
i‖ = ‖K −Λ+Λ−K

i‖ 6 ‖K −Λ‖+ ‖Λ−K
i‖ = 0 + sup

i∈{1,...,m}

∣

∣

∣
λi(K)− λi(K

i)
∣

∣

∣
.

According to the definition of β spectral perturbation stability, we have supi∈{1,...,m}

∣

∣λi(K)− λi(K
i)
∣

∣ 6 β. Thus,

|fS(x)− fSi(x)| 6 βκM
λ2(m−1)

+ 2κM
(m−1)λ

= κM
λ2(m−1)

(β + 2λ).

Appendix B Proof of Theorem 2

Definition B1. An algorithm A has uniform stability γ with respect to the loss function ℓ for the following:

∀S = {zi}mi=1 ∈ Zm,∀i ∈ {1, . . . ,m}, ‖ℓ(fS, ·) − ℓ(fSi , ·)‖∞ 6 γ.

Theorem B1 (Theorem 12 in [22]). Let A be an algorithm with uniform stability γ with respect to a loss

function ℓ such that 0 6 ℓ(fS, z) 6 L, for all z ∈ Z and all sets S. Then, for any m > 1, and any δ ∈ (0, 1), the

following bounds hold (separately) with probability at least 1− δ over the random draw of the sample S,

R(S) 6 Remp(S) + 2γ + (4mγ + L)

√

ln 1/δ

2m
.

Proof of Theorem 2. According to Theorem 1, we know that ‖fS − fSi‖∞ 6 C(β + 2λ). Thus, ∀z ∈ Z

|ℓ(fS, z)− ℓ(fSi , z)| = |(y − fS(x))
2 − (y − fSi(x))

2| = |fS(x)− fSi(x)| · |2y − fS(x) + fSi(x)|
6 C(β + 2λ)(2M + C(β + 2λ)) = 2MC(β + 2λ) + C2(β + 2λ)2.

From the definition of uniform stability (see in Definition B1, we know that the regularized least squares algorithm

is also 2MC(β + 2λ) + C2(β + 2λ)2 uniform stability.

Note that |y| 6 M and fS(x) = kT(K+mλI)−1y; therefore, we have |f(x)| 6 ‖k‖‖y‖
λmin(K+mλI)

6
κM
λ

. Therefore,

ℓ(fS, z) = (fS(x)− y)2 6 2f2
S(x)+2|y|2 6

2κ2M2

λ2 +2M2. According to the Theorem B1, the assertion is proved.
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