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Abstract

In this paper, we study the generalization performance dfi+olass classifica-
tion and obtain a shaper data-dependent generalizationkmund with fast con-
vergence rate, substantially improving the state-of-aurtals in the existing data-
dependent generalization analysis. The theoretical aisatyotivates us to devise
two effective multi-class kernel learning algorithms wathatistical guarantees. Ex-
perimental results show that our proposed methods carfisgmily outperform
the existing multi-class classification methods.

1 Introduction

Multi-class classification is an important problem in vasapplications, such as natural language
processing, information retrieval, computer vision, welveatising, etc. The statistical learning
theory of binary classification is by now relatively well édoped|([19, 20, 21, 23, 2[7,134], but there
are still numerous statistical challenges to its multsslaxtensions [25].

To understand the existing multi-class classification @lgms and guide the development of new
ones, people have investigated the generalization abilitgulti-class classification algorithms. In
recent years, some generalization bounds have been prbfmestimate the ability of multi-class
classification algorithms based on different measured) asd/C-dimensiori [1], Natarajan dimen-
sion [7], covering Numbelr_[9, 11, B7], Rademacher Compjef&t |14,/27], Stability [10], PAC-
Bayesian|[26], etc. Although there have been several rexhrainces in the studying of generaliza-
tion bounds of multi-class classification algorithms, aengence rates of the existing generalization
bounds are usuallf (K?/./n), whereK andn are the number of classes and size of the sample,
respectively.

In this paper, we derive a novel data-dependent generalizibund for multi-class classifica-
tion via the notion of local Rademacher complexity and fertdevise two effective multi-class
kernel learning algorithms based on the above theoretitalyais. The rate of this bound is
O((log K)**1/1e K /) which substantially improves on the existing data-depebdeneraliza-
tion bounds. Moreover, the proposed multi-class kernehieg algorithms have statistical guar-
antees and fast convergence rates. Experimental resultgsonf benchmark datasets show that
our proposed methods can significantly outperform the iegishulti-class classification methods.
The major contributions of this paper include: 1) A new |ldRademacher complexity based bound
with fast convergence rate for multi-class classificat@established. Existing works |16,/27] for
multi-class classifiers with Rademacher complexity dodstake into account couplings among
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different classes. To obtain sharper bound, we introdueeastructural complexity result on func-
tion classes induced by general classes via the maximunatgpewhile allowing to preserve the
correlations among different components meanwhile. Tausresult in this paper is a non-trivial
extension of the binary classification of local Rademaclenmexity to multi-classification; 2) T-
wo novel multi-class classification algorithms are propbsih statistical guarantees: @nv-MKL.
Using precomputed kernel matrices regularized by locakRshcher complexity, this method can
be implemented by ang,-norm multi-class MKL solvers; byMSD-MKL. This method puts local
Rademancher complexity in penalized ERM wéth,-norm regularizer, implemented by stochastic
sub-gradient descent with updating dual weights.

2 Related Work

2.1 Multi-Class Classification Bounds

Rademacher Complexities Bounds. Koltchinskii and Panchenko| [14] and Koltchinskii,
Panchenko, and Lozano [15] first introduced a margin-baseahd for multi-class classification
in terms of Rademacher complexity. This bound was slightiprioved in [27| 5]. Maximov and
Reshetova [25] gave a new Rademacher complexity based lbahd linear in the number of
classes. Based on tlig-norm regularization, Lei, Binder, and Klof [18] introduta bound with
a logarithmic dependence on the number of class size. bhsteglobal Rademacher complexity,
in this paper, we use local Rademacher complexity to obtainaaper bound, which substantially
improves generalization performance upon existing gl&zalemancher complexity methods.

VC-dimension Bounds. Allwein, Schapire, and Singer|[1] used the notion of VC-disien for
multi-class learning problems, and derived a VC-dimendiased bound. Natarajan dimension
was introduced in_[28] in order to characterize multi-cIBAE learnability, which exactly matches
the notion of Vapnik-Chervonenkis dimension in the case inaty classification. Daniely and
Shalev-Shwartz [7] derived a risk bound with Natarajan disien for multi-class classification. VC
dimension and Natarajan dimension are important tools tivelgeneralization bounds, however,
these bounds are usually dimension dependent, which mhkes hardly applicable to practical
large-scale problems (such as typical computer visionlpro).

Covering Number Bounds. Based on the,-norm covering number bound of linear operators,
Guermeur|[9] obtained a generalization bound exhibitininadr dependence on the class size,
which was improved by [37] to a radical dependence. Hill araiéet [11] derived a class-size
independent risk guarantee. However, their bound is baseddelicate definition of margin, which
is not commonly used in mainstream multi-class literature.

Stability Bounds and PAC-Bayesian BoundsStability [10] and PAC-Bayesian [26] are two pop-
ular tools to analyze generalization performance on nengborks for multi-class setting. Hardt,
Recht and Singer [10] generated generalization bounds &atets learned with stochastic gradi-
ent descent. McAllester [26] proposed a dropout bound faradenetworks with PAC-Bayesian.
However, the convergence rate based on stability and PA@dian is usually at mog®(1//n).

2.2 Local Rademacher Complexity

In recent years, several authors have appledl Rademacher complexity to obtain better gener-
alization error bounds for traditional binary classificati[2, 13, 22| 24], similar analysis has been
explored in multi-label learning [35] and multi-task learg [36] as well. However, numerous sta-
tistical challenges remain in the multi-class case, arglstill unclear how to use this tool to derive
a tighter bound for multi-class. In this paper, we bridgs tap by deriving a sharper generalization
bound using local Rademacher complexity.

2.3 Multi-Class Kernel Learning Algorithms

As one of the success stories in multiple kernel learninggrawements in multi-class MKL have
emerged [38], in which a one-stage multi-class MKL algarittvas presented as a generalization
of multi-class loss function_[6, 33]. And Orabona designeatisastic gradient methods, named
OBSCURE |[30] and UFO-MKLI[[29], which optimize primal versi® of equivalent problems. In



this paper, we consider the use of the local Rademacher eaihyplo devise the novel multi-class
classification algorithms, which have statistical guagastand fast convergence rates.

3 Notations and Preliminaries

We consider multi-class classification problems with> 2 classes in this paper. L&t be the
input space an@ = {1,2,..., K} the output space. Assume that we are given a saipie
{z1 = (x1,11),--+,2n = (Xn,yn)} Of sizen drawn i.i.d. from a fixed, but unknown probability
distributiony on 2 = X x ). Based on the training exampl&s we wish to learn a scoring rule
h from a spacé{ mapping fromz to R and use the mapping — argmax, ¢, h(x, y) to predict.
For any hypothesis € #, the margin of a labeled exampie= (x, y) is defined as

ph(z> = h(X, y) - n/,laXh(Xv y/)
y'#y

Theh misclassifies the labeled example= (x, y) if pr(z) < 0 and thus the expected risk incurred
from usingh for prediction isL(h) := E,[1,,(:)<o], Wherel;<q is the 0-1 lossl;<o = 1 if

t < 0, otherwise 0. Since 0-1 loss is hard to handle in learninghinas, one ususally considers
the proxy loss: such as the square hiffge = (1 — ¢)2 and the square margin logs(t) =

(Li<o + (1= ts*l)lo<tgs)2, s > 0. In the following, we assume that: Zjt) bounds the 0-1 loss:
li<o < £(t); 2) ¢ is decreasing and it has a zero paipti.e., £(c,) = 0; 3) £ is n-smooth, that
is [¢/(t) — ¢'(s)] < ¢|]t — s|. Note that both square hinge loss and margin loss satisfalibge

assumptions.

Any functionh : X x )Y — R can be equivalently represented by the vector-valued ifumct
(hi,...,hi) with h;(x) = h(x,5),¥j = 1,...,K. Letk : X x X — R be a Mercer kernel
with ¢ being the associated feature map, i€x,x’') = ($(x), ¢(x')). Thel,-norm hypothesis
space associated with the kerrédk denoted by:

H;DJ@ :{h’w = (<W1,¢(X)>, R} <wKa ¢(X>>> : ||w||27p S 171 S p S 2}7 (1)

wherew = (wy,...,wg) and||w||z, = {Zfil Hwng} " is thel; ,-norm. For any > 1, letq
be the dual exponent gfsatisfyingl /p+ 1/q = 1.
The space of loss function associated Wi}, is denoted by

L={ly:=Lpn(2)):he€Hpw}- @)

Let L(¢;) andL(¢;) be expected generalization error and empirical error veiipect ta/;,:
L(0y) == E,[0(pn(2))] and L(£y) = ZV%%

Definition 1 (Rademacher complexityAssumeL is a space of loss functions as defined in Equation
@). Then the empirical Rademacher complexityfas:

ﬁ(ﬁ) = Es [Sup _Zo—zgh Zi ] ’

LpeL ™
whereoy,09,...,0, is an ii.d. family of Rademacher variables taking valuesaatl 1 with e-
qual probability independent of the same= (z1, ..., z,). The Rademacher complexity 6fis

R(L) = E,R(L).

Generalization bounds based on the notion of Rademacheplerity for multi-class classifica-
tion are standard [14, 15,127]: with probability— 6, L(h) < infocy<1 (L(hy) + O(R(L) /7 +
log(1/8)/v/n)), whereL(h,) = 23" 1, (.,)<,]. SinceR(L) is in the order ofO(K?/\/n)

for various kernel multi- class in practlce so the standRademacher complexity bounds converge
atrateO(K?//n), usually.

Although Rademacher complexity is widely used in bound ga&imation analysis, it does not take
into consideration the fact that, typically, the hypotteselected by a learning algorithm have a



better performance than in the worst case and belong to afaareble sub-family of the set of all
hypotheses [4]. Therefore, to derive sharper generadizdtound, we consider the use of the local
Rademacher complexity in this paper.

Definition 2 (Local Rademacher Complexity}or anyr > 0, the local Rademacher complexity of
L is defined as

R(LT) =R {aﬁh‘a €[0,1],4n € L, L[(atly)?] < r} :
whereL((%) = E,, [*(pn(2))].

The key idea to obtain sharper generalization error boutwldeoose a much smaller clags C £
with as small a variance as possible, while requiring thatsthlution is still in{h|h € H,, .., (n €
L7},

In the following, we assume thét= sup, ¢y x(x,x) < oo, andl}, : Z — [0,d],d > Ois a constant.

The above two assumptions are two common restrictions omekdéunction and loss functions,
which are satisfied by the popular Gaussian kernels and tinvedeal hypothesis, respectively.

4 Sharper Generalization Bounds

In this section, we first estimate the local Rademacher cexitp|] and further derive a sharper
generalization bound.

4.1 Local Rademacher Complexity

The estimate the local Rademacher complexity of multisctdassification is given as follows.
Theorem 1. With probability at leastt — ¢,

ca0€(K)V/Trlog? (n) | 4log(1/9)
Vi no

R(L") <

where
(K) = { \/E(éll()lgl(l)prm7 if ¢ > 2log K,
(29)' T K, otherwise
cq,9 IS a constant depends ehand.

Note that the order of the (global) Rademacher complexigy 6vs usuaIIyO(KQ/\/ﬁ) for various
kernel multi-classes. From Theoré&in 1, one can see that tlez of the local Rademacher complex-
ity is R(L") = O(Vr&(K)/v/n + 1/n). Note that{(K) is logarithmic dependence di when

g > 2logK. For2 < q < 2log K, £(K) = (’)(Kﬁ) which is also substantially milder than the
guadratic dependence for Rademacher complexity. If we sdhacsuitable value of the order can
even reactO((log K )*+1/1°s K /) (see in the next subsection), which substantially imprdles
Rademacher complexity bounds.

4.2 A Sharper Generalization Bound

A sharper bound for multi-class classification based on tit®n of local Rademacher complexity
is derived as follows.
Theorem 2. Vh € H,, . andVk > max(1, ‘2/—3), with probability at least. — §, we have
K)log®
(K)log’n  cs } 7
n n

Mmgmw{#%im»m&wcw@*Q

where
(K = { Ve(dlog K)'Fomer | if ¢ > 2log K,
(2¢)'" "1 Kq, otherwise
cd, is a constant depending eh 9, ¢, k, andc; is a constant depending @n
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The order of the generalization bound in Theofém @{g?(K)/n). From the definition of (K),
we can obtain that

€2(K) O((logK)QH/logK/n), if ¢ > 2log K,
°(57)

n O(KQ/q/n), if 2<qg<2logkK.

Note that our bounds is linear dependence on the reciprésalople sizeq, while for the existing
data-dependent bounds are all radical dependence. Fudherour bounds enjoy a mild depen-
dence on the number of classes. The dependence is polyneithiglegree2/q for2 < ¢ < 2log K
and becomes logarithmicgf> 2 log K, which is substantially milder than the quadratic deperden
established in[14, 15, 27, 5].

4.3 Comparison with the Related Work

Rademacher Complexity BoundsKoltchinskii and Panchenko [14] and Koltchinskii, Pancken
and Lozana [15] introduce a margin-based bound for mudtsslassification in terms of Rademach-
er complexities:L(h) < infocqy<1 i(hv) + 0(7}\% 10%6). The order iSO(%), which is
slightly improved (by a constant factor prior to the Radeh®sacomplexity term) by [27, 5]. Max-
imov and Reshetova [25] give a new Rademacher complexitypdiofi(h) < infoc <1 ﬁ(hv) +
O(K/(yy/n) + log(1/6)/+/n), which has the form 0®(K/./n). Based on thé,-norm regular-
ization, Lei, Binder, and Klof [18] derive a new bound:(h) < L(¢) + O(log® K /\/n). The
existing bounds based on Rademacher complexity are attabdependence on the reciprocal of
sample size.

In this paper, we derive a sharper bound based on the locaracher complexity with order
O((log K)“ﬁ /n), substantially sharper than the existing bounds of Radeeracimplexity.

Covering Number Bounds Based on th€,,-norm covering number bound of linear operators,
Guermeur([9] obtains a generalization of fotk{X/\/n), which is improved by![37] to a radical

dependencef(h) < L(¢;) + O(y/K/n). Hill and Doucet [11] derive a class-size independent

risk guarantee of forrﬁ)(\/l/n). However, their bound is based on a delicate definition ofgmar
which is not commonly used in mainstream multi-class ltem

VC-dimension BoundsVC-dimension is an important tool to derive the generailimabound for
binary classification. Allwein, Schapire, and Singer [1dwhhow to use it for multi-class learning
problems, and derive a VC-dimension based bounds) < i(hw)+(9(\/Vlog K /\/n),whereV

is the VC-dimension. Natarajan dimension is introduce@bj [n order to characterize multi-class
PAC learnability. Daniely and Shalev-Shwartz [7] deriveengralization bound with Natarajan
dimension:L(h) < L(h,) + O(dnat/n), wheredy, is the Natarajan dimension. Note that VC
dimension bounds, as well as Natarajan dimension bourelsisaially dimension dependent, which
makes them hardly applicable for practical large scale lprab (such as typical computer vision
problems).

Stability and PAC-Bayesian BoundsStability [10] and PAC-Bayesian [26] are two useful tools to
analyze generalization performance on neural networka faulti-class setting. Hardt, Recht and
Singer [10] generated generalization bounds for modeiséshwith stochastic gradient descent

using stability: L(h) < L(h,) + O(1/y/n). McAllester [26] used the PAC-Bayesian theory to
derive generalization boundi() < L(h,) + O(y/L(h,)/n).

5 Multi-Class Multiple Kernel Learning

Motivated by the above analysis of generalization boundylleexploit the properties of the lo-
cal Rademacher complexity to devise two algorithms for ivaliftss multiple kernel learning (MC-
MKL).

In this paper, we consider the use of multiple kernels= Zf\rf:l mkm- A COMmon approach to
multi-class classification is the use of joint feature magps) : X — # [33]. For multiple kernel



learning, we havé\/ feature mapping®,,, m = 1,..., M andk,,(x,x') = (dm(X), dm (X)),
wherem = 1,..., M. Let¢,(x) = [¢1(x),...,¢m(x)]. Using Theorenil2, to obtain a shaper

generalization bound, we confige> 2log K, thusl < p < gfolgijil- The/, hypothesis space of
multiple kernels can be written as:
2log K
Hmkt = {hw,n“ = (<W17 ¢M(X)>a ceey <WK7 ¢I—L(X)>) , HWH27p <1l,1<p< m}

5.1 Conv-MKL

The global Rademacher complexity #f,,x; can be bounded by the trace of kernel makiy =
Zf\f:l K,,. Existing works on[[17, 32] use the following constraint#,;: Tr(K,) < 1. Ac-
cording to the above theoretical analysis, the local Rademar complexity (the tail sum of the
eigenvalues of the kernel) leads to tighter generalizdimmds than the global Rademancher com-

plexity (the trace). Thus, we add the local Rademancher texitpto restrictH ,,,x;:

Hi= {hw,nu € Hmkt - ZAJ(KH) < 1};
i><
where); (K,,) is thej-th eigenvalues oK,, and¢ is free parameter removing tiidlargest eigen-
values to control the tail sum. Note that the tail sum is tH&edince between the trace and the
largest eigenvalues: ;- A;(K,) = Tr(K,) — Z§=1 A;(K), thus the tail sum can be calculated
in O(n?¢) for each kernel.

One can see tha#{; is not convex, and we know that:z,f\fz1 fm D Aj(Km) =

M/ el S ise Nl Kn) < 3750 Aj(Ku). Thus, we consider the use of the convex
7‘[2:

M
HZ = {hw,nu S 7_[mkl : Z Nmz)\j(Km> S 1}
m=1 7i>C

According to normalized kernelg,, = (ij Aj(Km)) Kom andi, = SM_ | pnfim, we

can simply rewritet, as{hw@ - (<w1,¢3“(x)>,...,<WK,<2;“(X)>),HWHM <lLl<pc<

%, w0, ||l < 1}, which is a commonly studied hypothesis class in multi-ctasétiple

kernel learning. A simple process with precomputed kernafrices regularized by local Rade-
mancher complexity can be seen in Algorithin 1:

Algorithm 1 Conv-MKL

Input: precomputed kernel matricég, , ..., K, and¢
fori=1to M do

Compute tail sumr,, =3, - Aj (Kim)
Normalize precomputed kernel matri.,,, = K, /m
end for
UseK,,,m =1,..., M, as the basic kernels in afiy-norm MKL solver

5.2 SMSD-MKL

Considering a more challenging case, we perform penaliid &ver the clas${, aiming to solve
a convex optimization problem with an additional term rejerging local Rademancher complexity

n M
1 a
min = % (W, 6 (xi), 93) + 5 W3, + 8D ttmrm, 3)
’ i=1

m=1

C(w) Q(w)



Algorithm 2 SMSD-MKL

Input: o, 8,7, T
Initialize: w! =0,0' =0, u! =1,¢9=2logK
fort=1toT do
Sample at randorfx?, y*
Compute the dual weigh@*+! = 6* — 0C(wt)
viFL = |05 | — tBry, Ym =1,..., M

n(ptty|pttija—1
N:;Lrl = g||(017+”1H)|| ﬁl“q =vm=1,....M
end for
where ((w,du(x),5:) = \1 - <<wyi,¢u<xz->> ;géaﬂwy,mxi») and r, =
i +

ij Aj(K,») is the tail sum of then-th kernel matrixyn = 1,..., M.

Based on the stochastic mirror descent framework for miration problems in [31, 29], we design
a stochastic mirror and sub-gradient descent algorithftecc8MSD-MKL, to minimize [3), seen in
Algorithm[2.

As shown in the mirror descent algorithm, it maintains twagh¢vectors: the primal vectox and
the dual vectof. Meanwhile, the optimization formulation can be dividetbitwo parts:C(w) to
updatef and)(w) to updatew by the gradient of the Fenchel dual @f Actually, the algorithm
puts the kernel weight aside when updatin@, but u is updated together witiv according to a
tricky link function given in Theorernl3.

e For C'(w), the algorithm updates the dual vector with the gradienCofv). Since
hinge loss used i (w) is not differentiable, the algorithm uses sub-gradient’of=
(W, P (xh),y"), wheredt(w', ¢, (x"),y") is the sub-gradient w.rt'’.

e For{)(w), as in the UFO-MKL|[29], the algorithm uses = V{2* (@) to update the primal
vectorw, of which the calculation has been given in Theofém 3.

The algorithm starts wittw! = 0, 8! = 0 andu! = 1. Especially, the algorithm initializes

q = 2log K to make the order of generalization red@bw) according to Theorefd 2.
In each iteration, the algorithm randomly samples a tr@rmxample from the train set.

Actually, the algorithm updates real numbé&e. ||, .t andutF! in scalar products instead of
high-dimensional variables®*! and@! . The| 8% | can be calculated in an efficient incremental
way by scalar values as following:

107 = 1107, — 2"[13 = 1167115 — 267, - 2" + [|2"]I3

= (167,113 — 267, - (D (xi) — P (x;)) + 26 (xi, x;)?
wherez! = 9¢(w', ¢, (x"), y").

m

Theorem 3. Letv = [||01|| —Bri, .. 10l — ﬁrM} , then the component-th of VQ*(0) is

sgn(Vm )0 |Vm|qi1
al@ml  [p)|d 2’

wheresgn(z) is defined asgn(z) = 1if x > 0, sgn(z) = —1if x < 0 andsgn(z) € [—1,+1], if
z=0.

6 Experiments

In this section, we compare our proposiehv-MKL (Algorithm[d) andSMSD-MKL (Algorithm [2)
with 7 popular multi-class classification methods: OnehagaOne|[12], One-against-the-Rest [3],
£1-norm linear multi-class SVM (LMC)_[6], generalized minifm@aorm problem solver (GMNP)
[8], the Multiclass MKL (MC-MKL) with ¢;-norm and/s-norm [38] and mixed-norm MKL solved



Table 1:Comparison of average test accuracies of@urv-MKL andSMSD-MKL with the others. We
bold the numbers of the best method and underline the nurbdre other methods which are not
significantly worse than the best one.

Conv-MKL  SMSD-MKL LMC One vs. One One vs. Rest GMNP ¢; MC-MKL ¢2 MC-MKL UFO-MKL
plant 77.14£2.25 78.01£2.17 70.12£2.96 75.832.69 75.142.68 75.42:3.64 77.662.63 75.49+2.48 76.772.42
psortPos  74.4%£3.35 76.23+3.39 63.85+3.94 73.33:4.21 71.7:4.89 73.55-4.22 71.8#44.87 70.78:4.89 74.56:4.04
psortNeg  74.0#2.16 74.66+1.90 57.85+2.49 73.74:2.87 71.94:2.50 74.2#2.51 72.83:2.20 72.42:2.65 73.86£2.26
nonpl 79.15+1.51 78.69+1.58 75.16:1.48 77.78:1.52 77.49%-1.53 78.3%:1.46 77.8%1.79 77.95-1.64 78.0&41.56
sector 92.83:2.62 93.3910.70 93.16+0.66 90.610.69 91.34:0.61 \ \ 92.15+2.57 92.6@:0.47
segment 96.79¢0.91 97.62+0.83 95.041.11 97.08:0.61 97.02-0.80 96.8740.80 96.98-0.64 97.58-0.68 97.20+0.82
vehicle 79.35+£2.27 77.28t£2.78 75.613.56 78.721.92 79.11%1.94 81.5#2.24 74.96:2.93 76.2A43.15 76.92:2.83

vowel 98.82+1.19 98.83+5.57 62.32£4.97 98.12:1.76 98.22:1.83 97.04:1.85 98.2A&1.22 97.86:1.75 98.22:1.62
wine 99.63£0.96 99.63:0.96 97.872.80 97.24:3.05 98.14:3.04 97.6%2.43 98.611.75 98.52:1.89 99.44:1.13
dna 96.08:0.83 96.30£0.79 92.02+1.50 95.8%£0.56 95.610.73 94.6@0.94 96.2#0.68 95.06:0.92 95.84:0.61
glass 75.19£5.05 73.72£5.80 63.95:6.04 71.985.75 70.065.75 71.24:8.14 69.0A48.08 74.0%6.41 72.46:6.12
iris 96.6A42.94 97.00+£2.63 88.00£7.82 95.933.25 95.8A43.20 95.4@&7.34 95.4@6.46 94.08:7.82 95.93:2.88

svmguide2 82.6%5.65 85.17+3.83 81.10+4.15 84.79:3.45 84.27£3.03 81.77£3.45 83.16:3.63 83.84:4.21 82.914+3.09
satimage  91.640.88 91.78-0.82 84.95+1.15 90.6740.91 89.29:0.96 89.974-0.81 91.86£0.62 90.43+1.27 91.92+0.83

by stochastic gradient descent (UFO-MKL)[29]. Actuallyg womplete comparison tests via im-
plements in LIBSVM (One-against-One and One-againstRbst), the DOGMA libaryd (LMC,
GMNP, ¢1-nomr and/;-norm MC-MKL) and the SHOGUN-6.1{3 (UFO-MKL). We implement
our proposedonv-MKL andSMSD-VMKL algorithms based on UFO-MKL.

We experiment on 14 publicly available datasets: four ofitleealuated in [38] (plant, nonpl, psort-
Pos, and psortNeg) and others from LIBSVM Data. For eachsdgtave use the Gaussian kernel
K(x,x') = exp ( — ||x — x'||3/27) as our basic kernels, where€ 2¢,i = —10,-9,...,9, 10.
For single kernel methods (One vs. One, One vs. Rest and GMiPEhoose the kernel which
have the highest performance among basic kernels estirbgté-folds cross-validation. Mean-
while, we use all basic kernels in MKL method®tv-MKL, SMSD-MKL, /; MC-MKL, ¢5 MC-MKL
and UFO-MKL). The regularization parameterizede 2¢,i = —2,...,12 in all algorithms and

¢ e 2,i=1,2,...,4,8 € 10", = —4,...,1 in SMSD-MKL are determined by 10-folds cross-
validation on training data. Other parameters in compalgati#ghms follow the same experimental
setting in their papers. For each dataset, we run all mets@dsnes with randomly selected 80%
for training and 20% for testing, offering an estimate of stetistical significance of differences in
performance between methods. All statement of statissigalificance in the remainder refer to a
95% level of significance undettest.

The average test accuracies are reported in Tdble 1. Thisrehow: 1) Our method8onv-MKL
and SMSD-MKL give best results on nearly all datasets exaegtticleand satimage 2) SMSD-MKL

is better tharConv-VMKL because it wins on 2/3 datasets; 3) Compared with typical Miéthods,
our methods get better results over almost all datasetpeieat only UFO-MKL works slightly
better than ours osatige 4) The MKL methods usually work better than the compareglsikernel
methods (One vs. One, One vs. Rest and GMNP); 5) The kerrsdifitation methods have better
performance than the linear classification machine (LMCalbdatasets.

The above results show that the use of the local Rademachwylexity can significantly improve
the performance of multi-class multiple kernel learningoaithms, which conforms to our theoreti-
cal analysis.

7 Conclusion

In this paper, we studied the generalization performanceudfi-class classification, and derived a
sharper data dependent generalization error bound usrigehl Rademacher complexity, which is
much sharper than existing data-dependent generalizadiomds of multi-class classification. Then,
we designed two algorithms with statistical guaranteesfasidconvergence rateSonv-MKL and
SMSD-MKL. Based on local Rademacher complexity, our analysis caséde as a solid basis for the
design of new multi-class kernel learning algorithms.

2pvailable at http://dogma. sourceforge. net
3pAvailable at http://www.shogun-toolbox.org/
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