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Abstract

In this paper, we study the generalization performance of multi-class classifica-
tion and obtain a shaper data-dependent generalization error bound with fast con-
vergence rate, substantially improving the state-of-art bounds in the existing data-
dependent generalization analysis. The theoretical analysis motivates us to devise
two effective multi-class kernel learning algorithms withstatistical guarantees. Ex-
perimental results show that our proposed methods can significantly outperform
the existing multi-class classification methods.

1 Introduction

Multi-class classification is an important problem in various applications, such as natural language
processing, information retrieval, computer vision, web advertising, etc. The statistical learning
theory of binary classification is by now relatively well developed [19, 20, 21, 23, 27, 34], but there
are still numerous statistical challenges to its multi-class extensions [25].

To understand the existing multi-class classification algorithms and guide the development of new
ones, people have investigated the generalization abilityof multi-class classification algorithms. In
recent years, some generalization bounds have been proposed to estimate the ability of multi-class
classification algorithms based on different measures, such as VC-dimension [1], Natarajan dimen-
sion [7], covering Number [9, 11, 37], Rademacher Complexity [5, 14, 27], Stability [10], PAC-
Bayesian [26], etc. Although there have been several recentadvances in the studying of generaliza-
tion bounds of multi-class classification algorithms, convergence rates of the existing generalization
bounds are usuallyO

(
K2/

√
n
)
, whereK andn are the number of classes and size of the sample,

respectively.

In this paper, we derive a novel data-dependent generalization bound for multi-class classifica-
tion via the notion of local Rademacher complexity and further devise two effective multi-class
kernel learning algorithms based on the above theoretical analysis. The rate of this bound is
O
(
(logK)2+1/logK/n

)
, which substantially improves on the existing data-dependent generaliza-

tion bounds. Moreover, the proposed multi-class kernel learning algorithms have statistical guar-
antees and fast convergence rates. Experimental results onlots of benchmark datasets show that
our proposed methods can significantly outperform the existing multi-class classification methods.
The major contributions of this paper include: 1) A new localRademacher complexity based bound
with fast convergence rate for multi-class classification is established. Existing works [16, 27] for
multi-class classifiers with Rademacher complexity does not take into account couplings among
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different classes. To obtain sharper bound, we introduce a new structural complexity result on func-
tion classes induced by general classes via the maximum operator, while allowing to preserve the
correlations among different components meanwhile. Thus,our result in this paper is a non-trivial
extension of the binary classification of local Rademacher complexity to multi-classification; 2) T-
wo novel multi-class classification algorithms are proposed with statistical guarantees: a)Conv-MKL.
Using precomputed kernel matrices regularized by local Rademancher complexity, this method can
be implemented by anyℓp-norm multi-class MKL solvers; b)SMSD-MKL. This method puts local
Rademancher complexity in penalized ERM withℓ2,p-norm regularizer, implemented by stochastic
sub-gradient descent with updating dual weights.

2 Related Work

2.1 Multi-Class Classification Bounds

Rademacher Complexities Bounds. Koltchinskii and Panchenko [14] and Koltchinskii,
Panchenko, and Lozano [15] first introduced a margin-based bound for multi-class classification
in terms of Rademacher complexity. This bound was slightly improved in [27, 5]. Maximov and
Reshetova [25] gave a new Rademacher complexity based boundthat is linear in the number of
classes. Based on theℓp-norm regularization, Lei, Binder, and Klof [18] introduced a bound with
a logarithmic dependence on the number of class size. Instead of global Rademacher complexity,
in this paper, we use local Rademacher complexity to obtain asharper bound, which substantially
improves generalization performance upon existing globalRademancher complexity methods.

VC-dimension Bounds. Allwein, Schapire, and Singer [1] used the notion of VC-dimension for
multi-class learning problems, and derived a VC-dimensionbased bound. Natarajan dimension
was introduced in [28] in order to characterize multi-classPAC learnability, which exactly matches
the notion of Vapnik-Chervonenkis dimension in the case of binary classification. Daniely and
Shalev-Shwartz [7] derived a risk bound with Natarajan dimension for multi-class classification. VC
dimension and Natarajan dimension are important tools to derive generalization bounds, however,
these bounds are usually dimension dependent, which makes them hardly applicable to practical
large-scale problems (such as typical computer vision problems).

Covering Number Bounds. Based on theℓ∞-norm covering number bound of linear operators,
Guermeur [9] obtained a generalization bound exhibiting a linear dependence on the class size,
which was improved by [37] to a radical dependence. Hill and Doucet [11] derived a class-size
independent risk guarantee. However, their bound is based on a delicate definition of margin, which
is not commonly used in mainstream multi-class literature.

Stability Bounds and PAC-Bayesian Bounds.Stability [10] and PAC-Bayesian [26] are two pop-
ular tools to analyze generalization performance on neuralnetworks for multi-class setting. Hardt,
Recht and Singer [10] generated generalization bounds for models learned with stochastic gradi-
ent descent. McAllester [26] proposed a dropout bound for neural networks with PAC-Bayesian.
However, the convergence rate based on stability and PAC-Bayesian is usually at mostO(1/

√
n).

2.2 Local Rademacher Complexity

In recent years, several authors have appliedlocal Rademacher complexity to obtain better gener-
alization error bounds for traditional binary classification [2, 13, 22, 24], similar analysis has been
explored in multi-label learning [35] and multi-task learning [36] as well. However, numerous sta-
tistical challenges remain in the multi-class case, and it is still unclear how to use this tool to derive
a tighter bound for multi-class. In this paper, we bridge this gap by deriving a sharper generalization
bound using local Rademacher complexity.

2.3 Multi-Class Kernel Learning Algorithms

As one of the success stories in multiple kernel learning, improvements in multi-class MKL have
emerged [38], in which a one-stage multi-class MKL algorithm was presented as a generalization
of multi-class loss function [6, 33]. And Orabona designed stochastic gradient methods, named
OBSCURE [30] and UFO-MKL [29], which optimize primal versions of equivalent problems. In
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this paper, we consider the use of the local Rademacher complexity to devise the novel multi-class
classification algorithms, which have statistical guarantees and fast convergence rates.

3 Notations and Preliminaries

We consider multi-class classification problems withK ≥ 2 classes in this paper. LetX be the
input space andY = {1, 2, . . . ,K} the output space. Assume that we are given a sampleS =
{z1 = (x1, y1), . . . , zn = (xn, yn)} of sizen drawn i.i.d. from a fixed, but unknown probability
distributionµ onZ = X × Y. Based on the training examplesS, we wish to learn a scoring rule
h from a spaceH mapping fromZ to R and use the mappingx → argmaxy∈Y h(x, y) to predict.
For any hypothesish ∈ H, the margin of a labeled examplez = (x, y) is defined as

ρh(z) := h(x, y)−max
y′ 6=y

h(x, y′).

Theh misclassifies the labeled examplez = (x, y) if ρh(z) ≤ 0 and thus the expected risk incurred
from usingh for prediction isL(h) := Eµ[1ρh(z)≤0], where1t≤0 is the 0-1 loss,1t≤0 = 1 if
t ≤ 0, otherwise 0. Since 0-1 loss is hard to handle in learning machines, one ususally considers
the proxy loss: such as the square hingeℓ(t) = (1 − t)2+ and the square margin lossℓs(t) =(
1t≤0 + (1− ts−1)10<t≤s

)2
, s > 0. In the following, we assume that: 1)ℓ(t) bounds the 0-1 loss:

1t≤0 ≤ ℓ(t); 2) ℓ is decreasing and it has a zero pointcℓ, i.e., ℓ(cℓ) = 0; 3) ℓ is η-smooth, that
is |ℓ′(t) − ℓ′(s)| ≤ ζ|t − s|. Note that both square hinge loss and margin loss satisfy theabove
assumptions.

Any function h : X × Y → R can be equivalently represented by the vector-valued function
(h1, . . . , hK) with hj(x) = h(x, j), ∀j = 1, . . . ,K. Let κ : X × X → R be a Mercer kernel
with φ being the associated feature map, i.e.,κ(x,x′) = 〈φ(x), φ(x′)〉. Theℓp-norm hypothesis
space associated with the kernelκ is denoted by:

Hp,κ =
{
hw = (〈w1, φ(x)〉, . . . , 〈wK , φ(x)〉) : ‖w‖2,p ≤ 1, 1 ≤ p ≤ 2

}
, (1)

wherew = (w1, . . . ,wK) and‖w‖2,p =
[∑K

i=1 ‖wi‖p2
] 1

p

is theℓ2,p-norm. For anyp ≥ 1, let q

be the dual exponent ofp satisfying1/p+ 1/q = 1.

The space of loss function associated withHp,κ is denoted by

L = {ℓh := ℓ(ρh(z)) : h ∈ Hp,κ} . (2)

LetL(ℓh) andL̂(ℓh) be expected generalization error and empirical error with respect toℓh:

L(ℓh) := Eµ[ℓ(ρh(z))] andL̂(ℓh) =
1

n

n∑

i=1

ℓ(ρh(zi)).

Definition 1 (Rademacher complexity). AssumeL is a space of loss functions as defined in Equation
(2). Then the empirical Rademacher complexity ofL is:

R̂(L) := Eσ

[
sup
ℓh∈L

1

n

n∑

i=1

σiℓh(zi)

]
,

whereσ1, σ2, . . . , σn is an i.i.d. family of Rademacher variables taking values -1and 1 with e-
qual probability independent of the sampleS = (z1, . . . , zn). The Rademacher complexity ofL is
R(L) = EµR̂(L).

Generalization bounds based on the notion of Rademacher complexity for multi-class classifica-
tion are standard [14, 15, 27]: with probability1 − δ, L(h) ≤ inf0<γ<1

(
L̂(hγ) + O

(
R(L)/γ +

log(1/δ)/
√
n
))
, whereL̂(hγ) = 1

n

∑n
i=1

[
1ρh(zi)≤γ

]
. SinceR(L) is in the order ofO(K2/

√
n)

for various kernel multi-class in practice, so the standardRademacher complexity bounds converge
at rateO

(
K2/

√
n
)
, usually.

Although Rademacher complexity is widely used in bound generalization analysis, it does not take
into consideration the fact that, typically, the hypotheses selected by a learning algorithm have a
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better performance than in the worst case and belong to a morefavorable sub-family of the set of all
hypotheses [4]. Therefore, to derive sharper generalization bound, we consider the use of the local
Rademacher complexity in this paper.

Definition 2 (Local Rademacher Complexity). For anyr > 0, the local Rademacher complexity of
L is defined as

R(Lr) := R
{
aℓh

∣∣∣a ∈ [0, 1], ℓh ∈ L, L[(aℓh)2] ≤ r
}
,

whereL(ℓ2h) = Eµ

[
ℓ2(ρh(z))

]
.

The key idea to obtain sharper generalization error bound isto choose a much smaller classLr ⊆ L
with as small a variance as possible, while requiring that the solution is still in{h|h ∈ Hp,κ, ℓh ∈
Lr}.

In the following, we assume thatϑ = sup
x∈X κ(x,x) < ∞, andℓh : Z → [0, d], d > 0 is a constant.

The above two assumptions are two common restrictions on kernel function and loss functions,
which are satisfied by the popular Gaussian kernels and the bounded hypothesis, respectively.

4 Sharper Generalization Bounds

In this section, we first estimate the local Rademacher complexity, and further derive a sharper
generalization bound.

4.1 Local Rademacher Complexity

The estimate the local Rademacher complexity of multi-class classification is given as follows.

Theorem 1. With probability at least1− δ,

R(Lr) ≤ cd,ϑξ(K)
√
ζr log

3
2 (n)√

n
+

4 log(1/δ)

n
,

where

ξ(K) =

{√
e(4 logK)1+

1
2 log K , if q ≥ 2 logK,

(2q)1+
1
q K

1
q , otherwise,

cd,ϑ is a constant depends ond andϑ.

Note that the order of the (global) Rademacher complexity overL is usuallyO
(
K2/

√
n
)

for various
kernel multi-classes. From Theorem 1, one can see that the order of the local Rademacher complex-
ity is R(Lr) = O

(√
rξ(K)/

√
n + 1/n

)
. Note thatξ(K) is logarithmic dependence onK when

q ≥ 2 logK. For 2 ≤ q < 2 logK, ξ(K) = O(K
2
q ) which is also substantially milder than the

quadratic dependence for Rademacher complexity. If we choose a suitable value ofr, the order can
even reachO

(
(logK)2+1/ logK/n

)
(see in the next subsection), which substantially improvesthe

Rademacher complexity bounds.

4.2 A Sharper Generalization Bound

A sharper bound for multi-class classification based on the notion of local Rademacher complexity
is derived as follows.

Theorem 2. ∀h ∈ Hp,κ and∀k > max(1,
√
2

2d ), with probability at least1− δ, we have

L(h) ≤ max

{
k

k − 1
L̂(ℓh), L̂(ℓh) +

cd,ϑ,ζ,kξ
2(K) log3 n

n
+

cδ
n

}
,

where

ξ(K) =

{√
e(4 logK)1+

1
2 log K , if q ≥ 2 logK,

(2q)1+
1
q K

1
q , otherwise,

cd,ϑ is a constant depending ond, ϑ, ζ, k, andcδ is a constant depending onδ.
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The order of the generalization bound in Theorem 2 isO
(
ξ2(K)/n

)
. From the definition ofξ(K),

we can obtain that

O
(
ξ2(K)

n

)
=






O
(
(logK)2+1/logK/n

)
, if q ≥ 2 logK,

O
(
K2/q/n

)
, if 2 ≤ q < 2 logK.

Note that our bounds is linear dependence on the reciprocal of sample sizen, while for the existing
data-dependent bounds are all radical dependence. Furthermore, our bounds enjoy a mild depen-
dence on the number of classes. The dependence is polynomialwith degree2/q for 2 ≤ q < 2 logK
and becomes logarithmic ifq ≥ 2 logK, which is substantially milder than the quadratic dependence
established in [14, 15, 27, 5].

4.3 Comparison with the Related Work

Rademacher Complexity BoundsKoltchinskii and Panchenko [14] and Koltchinskii, Panchenko,
and Lozano [15] introduce a margin-based bound for multi-class classification in terms of Rademach-
er complexities:L(h) ≤ inf0<γ<1 L̂(hγ) + O

(
K2

γ
√
n
+ log 1/δ√

n

)
. The order isO

(
K2

√
n

)
, which is

slightly improved (by a constant factor prior to the Rademacher complexity term) by [27, 5]. Max-
imov and Reshetova [25] give a new Rademacher complexity bound: L(h) ≤ inf0<γ<1 L̂(hγ) +
O
(
K/(γ

√
n) + log(1/δ)/

√
n
)
, which has the form ofO

(
K/

√
n
)
. Based on theℓp-norm regular-

ization, Lei, Binder, and Klof [18] derive a new bound:L(h) ≤ L̂(ℓh) + O
(
log2 K/

√
n
)
. The

existing bounds based on Rademacher complexity are all radical dependence on the reciprocal of
sample size.

In this paper, we derive a sharper bound based on the local Rademacher complexity with order
O
(
(logK)2+

1
log K /n

)
, substantially sharper than the existing bounds of Rademacher complexity.

Covering Number Bounds Based on theℓ∞-norm covering number bound of linear operators,
Guermeur [9] obtains a generalization of formO

(
K/

√
n
)
, which is improved by [37] to a radical

dependence:L(h) ≤ L̂(ℓh) + O
(√

K/n
)
. Hill and Doucet [11] derive a class-size independent

risk guarantee of formO
(√

1/n
)
. However, their bound is based on a delicate definition of margin,

which is not commonly used in mainstream multi-class literature.

VC-dimension BoundsVC-dimension is an important tool to derive the generalization bound for
binary classification. Allwein, Schapire, and Singer [1] show how to use it for multi-class learning
problems, and derive a VC-dimension based bounds:L(h) ≤ L̂(hγ)+O

(√
V logK/

√
n
)
,whereV

is the VC-dimension. Natarajan dimension is introduced in [28] in order to characterize multi-class
PAC learnability. Daniely and Shalev-Shwartz [7] derive a generalization bound with Natarajan
dimension:L(h) ≤ L̂(hγ) + O

(
dNat/n

)
, wheredNat is the Natarajan dimension. Note that VC

dimension bounds, as well as Natarajan dimension bounds, are usually dimension dependent, which
makes them hardly applicable for practical large scale problems (such as typical computer vision
problems).

Stability and PAC-Bayesian BoundsStability [10] and PAC-Bayesian [26] are two useful tools to
analyze generalization performance on neural networks fora multi-class setting. Hardt, Recht and
Singer [10] generated generalization bounds for models learned with stochastic gradient descent
using stability: L(h) ≤ L̂(hγ) + O

(
1/

√
n
)
. McAllester [26] used the PAC-Bayesian theory to

derive generalization bound:L(h) ≤ L̂(hγ) +O
(√

L̂(hγ)/n
)
.

5 Multi-Class Multiple Kernel Learning

Motivated by the above analysis of generalization bound, wewill exploit the properties of the lo-
cal Rademacher complexity to devise two algorithms for multi-class multiple kernel learning (MC-
MKL).

In this paper, we consider the use of multiple kernels,κµ =
∑M

m=1 µmκm. A common approach to
multi-class classification is the use of joint feature mapsφ(x) : X → H [33]. For multiple kernel
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learning, we haveM feature mappingsφm, m = 1, . . . ,M andκm(x,x′) = 〈φm(x), φm(x′)〉,
wherem = 1, . . . ,M . Let φµ(x) = [φ1(x), . . . , φM (x)]. Using Theorem 2, to obtain a shaper
generalization bound, we confineq ≥ 2 logK, thus1 < p ≤ 2 logK

2 logK−1 . Theℓp hypothesis space of
multiple kernels can be written as:

Hmkl =
{
hw,κµ

= (〈w1, φµ(x)〉, . . . , 〈wK , φµ(x)〉) , ‖w‖2,p ≤ 1, 1 < p ≤ 2 logK

2 logK − 1

}
.

5.1 Conv-MKL

The global Rademacher complexity ofHmkl can be bounded by the trace of kernel matrixKµ =∑M
m=1 Km. Existing works on [17, 32] use the following constraint toHmkl: Tr(Kµ) ≤ 1. Ac-

cording to the above theoretical analysis, the local Rademancher complexity (the tail sum of the
eigenvalues of the kernel) leads to tighter generalizationbounds than the global Rademancher com-
plexity (the trace). Thus, we add the local Rademancher complexity to restrictHmkl:

H1 =
{
hw,κµ

∈ Hmkl :
∑

j>ζ

λj(Kµ) ≤ 1
}
,

whereλj(Kµ) is thej-th eigenvalues ofKµ andζ is free parameter removing theζ largest eigen-
values to control the tail sum. Note that the tail sum is the difference between the trace and theζ

largest eigenvalues:
∑

j>ζ λj(Kµ) = Tr(Kµ)−
∑ζ

j=1 λj(Kµ), thus the tail sum can be calculated
in O(n2ζ) for each kernel.

One can see thatH1 is not convex, and we know that:
∑M

m=1 µm

∑
j>ζ λj(Km) =

∑M
m=1 µm/‖µ‖1

∑
j>ζ λj(‖µ‖1Km) ≤ ∑

j>ζ λj

(
Kµ

)
. Thus, we consider the use of the convex

H2:

H2 =
{
hw,κµ

∈ Hmkl :

M∑

m=1

µm

∑

j>ζ

λj(Km) ≤ 1
}
.

According to normalized kernels̃κm =
(∑

j>ζ λj(Km)
)−1

κm andκ̃µ =
∑M

m=1 µmκ̃m, we

can simply rewriteH2 as
{
hw,κ̃µ

=
(
〈w1, φ̃µ(x)〉, . . . , 〈wK , φ̃µ(x)〉

)
, ‖w‖2,p ≤ 1, 1 < p ≤

2 logK
2 logK−1 ,µ � 0, ‖µ‖1 ≤ 1

}
, which is a commonly studied hypothesis class in multi-classmultiple

kernel learning. A simple process with precomputed kernel matrices regularized by local Rade-
mancher complexity can be seen in Algorithm 1:

Algorithm 1 Conv-MKL

Input: precomputed kernel matricesK1, . . . ,KM andζ
for i = 1 to M do

Compute tail sum:rm =
∑

j>ζ λj (Km)

Normalize precomputed kernel matrix:̃Km = Km/rm
end for
UseK̃m, m = 1, . . . ,M , as the basic kernels in anyℓp-norm MKL solver

5.2 SMSD-MKL

Considering a more challenging case, we perform penalized ERM over the classH1, aiming to solve
a convex optimization problem with an additional term representing local Rademancher complexity
:

min
w,µ

1

n

n∑

i=1

ℓ(w, φµ(xi), yi)

︸ ︷︷ ︸
C(w)

+
α

2
‖w‖22,p + β

M∑

m=1

µmrm

︸ ︷︷ ︸
Ω(w)

, (3)
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Algorithm 2 SMSD-MKL

Input: α, β, r, T
Initialize: w

1 = 0, θθθ1 = 0,µ1 = 1, q = 2 logK
for t = 1 to T do

Sample at random(xt, yt)
Compute the dual weight:θθθt+1 = θθθt − ∂C(wt)
νt+1
m = ‖θt+1

m ‖ − tβrm, ∀m = 1, . . . ,M

µt+1
m =

sgn(νt+1
m )|νt+1

m |q−1

α‖θt+1
m ‖|νt+1

m |q−2
q

, ∀m = 1, . . . ,M

end for

where ℓ(w, φµ(xi), yi) =

∣∣∣∣1−
(
〈wyi , φµ(xi)〉 −max

y 6=yi

〈wy, φµ(xi)〉
)∣∣∣∣

+

and rm =
∑

j>ζ λj(Km) is the tail sum of them-th kernel matrix,m = 1, . . . ,M .

Based on the stochastic mirror descent framework for minimization problems in [31, 29], we design
a stochastic mirror and sub-gradient descent algorithm, called SMSD-MKL, to minimize (3), seen in
Algorithm 2.

As shown in the mirror descent algorithm, it maintains two weight vectors: the primal vectorw and
the dual vectorθθθ. Meanwhile, the optimization formulation can be divided into two parts:C(w) to
updateθθθ andΩ(w) to updatew by the gradient of the Fenchel dual ofΩ. Actually, the algorithm
puts the kernel weightµµµ aside when updatingθθθ, butµµµ is updated together withw according to a
tricky link function given in Theorem 3.

• For C(w), the algorithm updates the dual vector with the gradient ofC(w). Since
hinge loss used inC(w) is not differentiable, the algorithm uses sub-gradient ofzt =
∂ℓ(wt, φµ(x

t), yt), where∂ℓ(wt, φµ(x
t), yt) is the sub-gradient w.r.twt.

• ForΩ(w), as in the UFO-MKL [29], the algorithm usesw = ∇Ω∗(θθθ) to update the primal
vectorw, of which the calculation has been given in Theorem 3.

The algorithm starts withw1 = 0, θθθ1 = 0 andµµµ1 = 1. Especially, the algorithm initializes

q = 2 logK to make the order of generalization reachO
( (logK)2+1/ log K

n

)
, according to Theorem 2.

In each iteration, the algorithm randomly samples a training example from the train set.

Actually, the algorithm updates real numbers‖θt+1
m ‖, νt+1

m andµt+1
m in scalar products instead of

high-dimensional variableswt+1 andθt+1
m . The‖θt+1

m ‖ can be calculated in an efficient incremental
way by scalar values as following:

‖θθθt+1
m ‖ = ‖θθθtm − zt‖22 = ‖θθθtm‖22 − 2θθθtm · zt + ‖zt‖22

= ‖θθθtm‖22 − 2θθθtm · (φm(xi)− φm(xj)) + 2κm(xi,xi)
2

wherezt = ∂ℓ(wt, φµ(x
t), yt).

Theorem 3. Letν =
[
‖θθθ1‖ − βr1, . . . , ‖θθθM‖ − βrM

]
, then the componentm-th of ∇Ω∗(θθθ) is

sgn(νm)θθθm
α‖θθθm‖

|νm|q−1

‖ν‖q−2
q

,

wheresgn(x) is defined assgn(x) = 1 if x > 0, sgn(x) = −1 if x < 0 andsgn(x) ∈ [−1,+1], if
x = 0.

6 Experiments

In this section, we compare our proposedConv-MKL (Algorithm 1) andSMSD-MKL (Algorithm 2)
with 7 popular multi-class classification methods: One-against-One [12], One-against-the-Rest [3],
ℓ1-norm linear multi-class SVM (LMC) [6], generalized minimal norm problem solver (GMNP)
[8], the Multiclass MKL (MC-MKL) with ℓ1-norm andℓ2-norm [38] and mixed-norm MKL solved
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Table 1:Comparison of average test accuracies of ourConv-MKL andSMSD-MKLwith the others. We
bold the numbers of the best method and underline the numbersof the other methods which are not
significantly worse than the best one.

Conv-MKL SMSD-MKL LMC One vs. One One vs. Rest GMNP ℓ1 MC-MKL ℓ2 MC-MKL UFO-MKL
plant 77.14±2.25 78.01±2.17 70.12±2.96 75.83±2.69 75.17±2.68 75.42±3.64 77.60±2.63 75.49±2.48 76.77±2.42
psortPos 74.41±3.35 76.23±3.39 63.85±3.94 73.33±4.21 71.70±4.89 73.55±4.22 71.87±4.87 70.70±4.89 74.56±4.04
psortNeg 74.07±2.16 74.66±1.90 57.85±2.49 73.74±2.87 71.94±2.50 74.27±2.51 72.83±2.20 72.42±2.65 73.80±2.26
nonpl 79.15±1.51 78.69±1.58 75.16±1.48 77.78±1.52 77.49±1.53 78.35±1.46 77.89±1.79 77.95±1.64 78.07±1.56
sector 92.83±2.62 93.39±0.70 93.16±0.66 90.61±0.69 91.34±0.61 \ \ 92.15±2.57 92.60±0.47
segment 96.79±0.91 97.62±0.83 95.07±1.11 97.08±0.61 97.02±0.80 96.87±0.80 96.98±0.64 97.58±0.68 97.20±0.82
vehicle 79.35±2.27 77.28±2.78 75.61±3.56 78.72±1.92 79.11±1.94 81.57±2.24 74.96±2.93 76.27±3.15 76.92±2.83
vowel 98.82±1.19 98.83±5.57 62.32±4.97 98.12±1.76 98.22±1.83 97.04±1.85 98.27±1.22 97.86±1.75 98.22±1.62
wine 99.63±0.96 99.63±0.96 97.87±2.80 97.24±3.05 98.14±3.04 97.69±2.43 98.61±1.75 98.52±1.89 99.44±1.13
dna 96.08±0.83 96.30±0.79 92.02±1.50 95.89±0.56 95.61±0.73 94.60±0.94 96.27±0.68 95.06±0.92 95.84±0.61
glass 75.19±5.05 73.72±5.80 63.95±6.04 71.98±5.75 70.00±5.75 71.24±8.14 69.07±8.08 74.03±6.41 72.46±6.12
iris 96.67±2.94 97.00±2.63 88.00±7.82 95.93±3.25 95.87±3.20 95.40±7.34 95.40±6.46 94.00±7.82 95.93±2.88
svmguide2 82.69±5.65 85.17±3.83 81.10±4.15 84.79±3.45 84.27±3.03 81.77±3.45 83.16±3.63 83.84±4.21 82.91±3.09
satimage 91.64±0.88 91.78±0.82 84.95±1.15 90.67±0.91 89.29±0.96 89.97±0.81 91.86±0.62 90.43±1.27 91.92±0.83

by stochastic gradient descent (UFO-MKL) [29]. Actually, we complete comparison tests via im-
plements in LIBSVM (One-against-One and One-against-the-Rest), the DOGMA libary2 (LMC,
GMNP, ℓ1-nomr andℓ2-norm MC-MKL) and the SHOGUN-6.1.33 (UFO-MKL). We implement
our proposedConv-MKL andSMSD-MKL algorithms based on UFO-MKL.

We experiment on 14 publicly available datasets: four of them evaluated in [38] (plant, nonpl, psort-
Pos, and psortNeg) and others from LIBSVM Data. For each dataset, we use the Gaussian kernel
K(x,x′) = exp

(
− ‖x− x

′‖22/2τ
)

as our basic kernels, whereτ ∈ 2i, i = −10,−9, . . . , 9, 10.
For single kernel methods (One vs. One, One vs. Rest and GMNP), we choose the kernel which
have the highest performance among basic kernels estimatedby 10-folds cross-validation. Mean-
while, we use all basic kernels in MKL methods (Conv-MKL,SMSD-MKL, ℓ1 MC-MKL, ℓ2 MC-MKL
and UFO-MKL). The regularization parameterizedα ∈ 2i, i = −2, . . . , 12 in all algorithms and
ζ ∈ 2i, i = 1, 2, . . . , 4, β ∈ 10i, i = −4, . . . , 1 in SMSD-MKL are determined by 10-folds cross-
validation on training data. Other parameters in compared algorithms follow the same experimental
setting in their papers. For each dataset, we run all methods50 times with randomly selected 80%
for training and 20% for testing, offering an estimate of thestatistical significance of differences in
performance between methods. All statement of statisticalsignificance in the remainder refer to a
95% level of significance undert-test.

The average test accuracies are reported in Table 1. The results show: 1) Our methodsConv-MKL
andSMSD-MKL give best results on nearly all datasets exceptvehicleandsatimage; 2) SMSD-MKL
is better thanConv-MKL because it wins on 2/3 datasets; 3) Compared with typical MKLmethods,
our methods get better results over almost all datasets except that only UFO-MKL works slightly
better than ours onsatige; 4) The MKL methods usually work better than the compared single kernel
methods (One vs. One, One vs. Rest and GMNP); 5) The kernel classification methods have better
performance than the linear classification machine (LMC) onall datasets.

The above results show that the use of the local Rademacher complexity can significantly improve
the performance of multi-class multiple kernel learning algorithms, which conforms to our theoreti-
cal analysis.

7 Conclusion

In this paper, we studied the generalization performance ofmulti-class classification, and derived a
sharper data dependent generalization error bound using the local Rademacher complexity, which is
much sharper than existing data-dependent generalizationbounds of multi-class classification. Then,
we designed two algorithms with statistical guarantees andfast convergence rates:Conv-MKL and
SMSD-MKL. Based on local Rademacher complexity, our analysis can be used as a solid basis for the
design of new multi-class kernel learning algorithms.

2Available at http://dogma. sourceforge. net
3Available at http://www.shogun-toolbox.org/
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