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Abstract

Kernel selection is a fundamental problem of k-
ernel methods. Existing measures for kernel se-
lection either provide less theoretical guarantee or
have high computational complexity. In this pa-
per, we propose a novel kernel selection criterion
based on a newly defined spectral measure of a k-
ernel matrix, with sound theoretical foundation and
high computational efficiency. We first show that
the spectral measure can be used to derive gener-
alization bounds for some kernel-based algorithms.
By minimizing the derived generalization bounds,
we propose the kernel selection criterion with spec-
tral measure. Moreover, we demonstrate that the
popular minimum graph cut and maximum mean
discrepancy are two special cases of the proposed
criterion. Experimental results on lots of data sets
show that our proposed criterion can not only give
the comparable results as the state-of-the-art crite-
rion, but also significantly improve the efficiency.

1 Introduction
Kernel methods, such as support vector machine (SVM) and
least square support vector machine (LSSVM), have been
widely used in data mining, pattern recognition and machine
learning. The performance of these algorithms greatly de-
pends on the choice of kernel function. Therefore, kernel s-
election is foundational to kernel methods and is also a chal-
lenging problem in kernel methods.

The standard technique for kernel selection is cross-
validation (CV). It consists in using a subset of the data for
training, and then testing on the remaining data in order to es-
timate the generalization error. However, CV requires train-
ing the learning algorithm several times, which is computa-
tionally intensive. For the sake of efficiency, some approxi-
mate CV criteria are introduced: such as generalized cross-
validation (GCV) [Golub et al., 1979], generalized approx-
imate cross-validation (GACV) [Wahba et al., 1999], span
bound [Chapelle et al., 2002], efficient leave-one-out cross-
validation (ELOO) [Cawley, 2006], influence function [De-

∗Corresponding author

bruyne et al., 2008], Bouligand Influence Function [Liu et
al., 2014; Liu and Liao, 2017], et al.

Kernel target alignment (KTA) [Cristianini et al., 2001] is
another widely used criterion that can be effectively calcu-
lated in O(n2) time complexity, where n is the size of data
set. Based on the centered kernel matrix, an improved cen-
tered KTA (called CKTA) is proposed [Cortes et al., 2010],
which gives better performance than KTA. FSM is another
criterion that can be effectively calculated [Nguyen and Ho,
2008], which evaluates the goodness of a kernel function via
the data distribution in the feature space. Due to their simplic-
ity and efficiency, KTA, CKTA and FSM have been widely
used. However, the connection between these measures and
the generalization error of some special algorithms, such as
SVM and LSSVM, has not established. Therefore, the ker-
nels chosen by these criteria can not guarantee good perfor-
mance for these specific algorithms.

Minimizing theoretical estimate bounds of generalization
error is an alternative to kernel selection. To this end, some
measures of complexity are introduced: such as VC dimen-
sion [Vapnik, 2000], Rademacher complexity [Bartlett and
Mendelson, 2002], local Rademacher complexity [Bartlett et
al., 2005], covering number [Zhang, 2002], uniform stabil-
ity [Bousquet and Elisseeff, 2002], compression coefficient
[Luxburg et al., 2004], eigenvalues perturbation [Liu et al.,
2013], kernel stability [Liu and Liao, 2014], eigenvalues ra-
tio [Liu and Liao, 2015], principal eigenvalue proportion [Liu
et al., 2017d; 2017c], et al.

However, the focus of these measures lies on deriving the-
oretical generalization bounds, which are usually difficult to
be used for kernel selection in practice. To address this prob-
lem, Cortes et al. [2013] used the tail eigenvalues of kernel
matrix to design new algorithms for learning kernels. How-
ever, the theoretical error bound based on the tail eigenvalues
of kernel matrix is lacking. Liu et al. [2015] investigate it
further, and introduce a notion of eigenvalue ratio for kernel
selection, which can be used to derive generalization bounds.
However, the time complexity of this measure is high. More-
over, this measure brings two extra parameters that should be
tuned, making this measure hard to use.

In this paper, we propose a novel measure, called spectral
measure, with sound theoretical foundation and high com-
putational efficiency. The spectral measure is defined based
on the spectral decomposition of kernel matrix, and can be
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effectively calculated in O(n2). We show that the generaliza-
tion error of SVM and LSSVM can be bounded with spectral
measure. Furthermore, we propose a new kernel selection cri-
terion with spectral measure by minimizing the derived upper
bounds to guarantee good generalization performance, and
prove that the minimum graph cut and maximum mean dis-
crepancy are its two special cases. Theoretical analyses and
experimental results show that our criterion is sound and ef-
fective. To our knowledge, the kernel selection criterion with
both theoretical guarantee and O(n2) time complexity for k-
ernel methods has never been given before.

2 Notations and Preliminaries
We consider supervised learning where a learning algorithm
receives a sample of n labeled points S = {(xi, yi)}ni=1 ∈
(X × Y)n, where X denotes the input space and Y =
{−1,+1} denotes the output space. We assume S is drawn i-
dentically and independently from a fixed, but unknown prob-
ability distribution D on X × Y .

Let K : X × X → R be a kernel function. The repro-
ducing kernel Hilbert space (RKHS) HK associated with K
is defined to be the completion of the linear span of the set of
functions {K(x, ·) : x ∈ X} with the inner product denoted
as 〈·, ·〉K satisfying 〈K(x, ·), f〉K = f(x), ∀f ∈ HK . We
use ‖ · ‖K to denote the norm inHK . In this paper, we study
the regularized algorithms:

fS := arg min
f∈HK

{
n∑
i=1

`(f(xi), yi) + λ‖f‖2K

}
,

where `(·, ·) is a loss function and λ is the regularization
parameter. Choosing `(·, ·) to be the square loss `(t, y) =
(t − y)2 gives rise to LSSVM while choosing it to be the
hinge loss `(t, y) = max{0, 1− yt} produces SVM.

The performance of the regularized algorithms for classi-
fication is usually measured by the generalization error or
risk R(S) = Pr(x,y)∼D[yfS(x) < 0]. Unfortunately, R(S)
can not be computed since the probability distribution D is
unknown, hence we should estimate it from empirical data.
In this paper, we will introduce a novel measure to estimate
it.

K = [K(xi,xj)]
n
i,j=1 is the kernel matrix and N is

the normal kernel matrix denoted as N = K/|K|1, where
|K|1 =

∑n
i,j=1K(xi,xj). Let (λi,vi) be the spectral

decomposition of N, where λi is the eigenvalue and vi is
the eigenvector, i = 1, . . . , n.

In the following, we assume that |K|1 =: C, and 0 ≤
K(x,x′) ≤ κ, ∀x,x′ ∈ X . Let R+ = {t|t ∈ R, t ≥ 0}.

3 Spectral Measure
In this section, we will first introduce the definition of spectral
measure, and then use it to derive generalization bounds for
LSSVM and SVM.

3.1 Definition of Spectral Measure
It is well known that the kernel matrix contains most of the in-
formation needed by kernel methods, and its spectral decom-
position plays an important role in kernel matrix. Therefore,

we aim at proposing a novel measure based on the spectral
decomposition of kernel matrix for kernel selection.
Definition 1 (Spectral Measure (SM)). Let (λi,vi) be the
spectral decomposition of the normal kernel matrix N, i =
1, . . . , n. Assume that ϕ : R+ → R+ is a function, ϕ(λi) ≤
λi for all i ∈ {1, . . . , n}. Then the spectral measure of K
with respect to ϕ is defined as

SM(K,ϕ) :=
1

n

n∑
i=1

ϕ(λi)〈y,vi〉2,

where y = (y1, . . . , yn)T.
The condition of ϕ(λi) ≤ λi looks strange at first glance.

Then, we will give two forms of ϕ to show that it is a very
important element to remove the noise. Two special cases of
ϕ are given as follows:
• Hinge form: h ≥ 0,

ϕ(λi) =

{
0 if λi ≤ h,
λi otherwise.

• High degree form:
ϕ(λi) = λri , r ≥ 1.

It is easy to verity that the Hinge form satisfies the assump-
tion of ϕ(λi) ≤ λi. From the definition of N, one can see
that 0 ≤ λi ≤ 1, so the high degree form also satisfies the
assumption of ϕ(λi) ≤ λi.

From the definition of the above two forms of ϕ, one can
see that ϕ(λi) = 0 (Hinge form) or ϕ(λi)→ 0 quickly (High
degree form) when λi is small. Note that the small value of
eigenvalue usually expresses the noise [Steinwart and Christ-
mann, 2008], thus we can use them to remove the noise.

When we use the High degree form,

SM(K,ϕ) : =
1

n

n∑
i=1

λri 〈y,vi〉2

= yT

(
n∑
i=1

λriviv
T
i

)
y = yTNry

The above equations shows that the SM(K, tr) can be effec-
tively calculated in O(n2).
Remark 1. The time cost of high degree form isO(n2), which
is much faster than that of Hinge form. However, the accu-
racy of these two forms is similar, so in this paper, we only
consider the use of high degree form for kernel selection.

3.2 SM-based Generalization Error Bounds
In this subsection, we will derive the generalization bounds
for LSSVM and SVM with spectral measure.
Theorem 1. Consider the LSSVM, and assume that ‖f‖K ≤
1, ∀f ∈ HK . Then, with probability 1 − δ over the random
choice of sample S with size n ≥ 5, we have

R(S) ≤ 1− c0 · SM(K,ϕ)+

inf
θ∈(0,1]

[
θ +

7µ+ 3
√

3µ+ 6

3n
+

√
3µ

n

]
,

where µ = 8
θ2 lnn ln(2n) + ln 2n

δ , c0 = Cλ
C+λ .
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Table 1: Time complexity and theoretical guarantee of Cross-
Validation, KTA, CKTA, FSM and ER

Criteria Time complexity Theory
Cross-Validation O(n3) at least Yes
KTA, CKTA, FSM O(n2) No
ER O(n3) Yes
SM (Ours) O(n2) Yes

Proof. The proof is given in Appendix A.

The assumption of ∀f ∈ HK , ‖f‖K ≤ 1 is a common
assumption which is used in [Bartlett et al., 2005; Kloft and
Blanchard, 2011; Cortes et al., 2013].

The above theorem shows that the generalization error of
LSSVM can be bounded with spectral measure SM(K,ϕ).
Therefore, we can choose the kernel function by maximizing
SM(K,ϕ) to guarantee good generalization performance.
Theorem 2. Consider the SVM, and assume that ‖f‖K ≤
1, ∀f ∈ HK . Then, for SVM, with probability 1− δ over the
random choice of sample S with size n ≥ 5, we have

R(S) ≤ 1− C · SM(K,ϕ)+

inf
θ∈(0,1]

[
θ +

7µ+ 3
√

3µ+ 3/(2λ) + 3b

3n
+

√
3µ

n

]
,

where µ = 8
θ2 lnn ln(2n) + ln 2n

δ , and b = max{1, 1
2λ − 1}.

Proof. The proof is given in Appendix B.

The above theoretical analysis demonstrates the theoretical
guarantee of spectral measure for kernel selection.

4 Spectral Kernel Selection
In this section, we will present a novel kernel selection crite-
rion with spectral measure, and show the minimum graph cut
and maximum mean discrepancy are its two special cases.

According to Theorem 1 and Theorem 2, to guarantee good
generalization performance, we can select the kernel function
by maximizing the spectral measure SM(K,ϕ). Note that
we can set ϕ(t) = tr to ignore the noise, and we know that
SM(K, tr) can be calculated effectively. Thus, we consider
the use of the following kernel selection criterion:

arg max
K∈K

SM(K, tr) =
1

n
yTNry

where K is a candidate set of kernel functions. Note that we
can give different weights to positive and negative classes ac-
cording to their sample sizes to avoid the imbalance problem
of positive and negative classes. Thus, we finally consider the
following weighted spectral measure criterion (SM):

arg max
K∈K

SM(K, tr) =
1

n
ȳTNrȳ, (1)

where ȳ+ = n
n+

and ȳ− = − n
n−

, n+ and n− are respec-
tive the sizes of positive and negative classes. One can see
that the time complexity of SM criterion is O(n2). The time
complexity of existing popular kernel selection criteria, and
whether they have theoretical guarantee are reported in Table
1. We can find that our SM is the only criterion with both
theoretical guarantee and O(n2) time complexity.

Connections to Graph Cut
In graph theory, graph cut is used to measure the degree of
dissimilarity of different segmentation [Shi and Malik, 2000].
Note that K(xi,xj) can be considered as the similarity be-
tween xi and xj , thus we can use kernel matrix K as similar
matrix to construct a graph. In this case, the normalized graph
cut (Ncut) [Shi and Malik, 2000] can be written as

Ncut(K) =
yTLy

yTDy
,

where L = D−K, K is the kernel matrix, D is the diagonal
matrix with the diagonal element Dii =

∑n
j=1 Kij .

If the positive and negative classes are balanced, that is
n+ = n−, then yTDy =

∑n
i=1 Dii =

∑n
i,j=1 Kij = |K|1.

Thus, we have

Ncut(K) = 1− yTKy

yTDy
= 1− ȳTKȳ

2|K|1
= 1− n

2
· SM(K, t),

The above equation shows that minimizing Ncut(K) is equal
to maximizing SM(K,ϕ) when setting ϕ(t) = t for kernel
selection.

Connections to Mean Discrepancy
Mean discrepancy (MD) [Gretton et al., 2007] is proposed
to test whether two distributions are different on the basis of
samples drawn from each of them. The estimate of MD in
RKHSHK [Gretton et al., 2007] can be written as

MD(K) =
∥∥∥ 1

n+

n+∑
i

φ(xi)−
1

n−

n−∑
j

φ(xj)
∥∥∥
K
,

where 〈φ(xi), φ(xj)〉K = Kij .
If K has been normalized, that is K = N, it is easy to

verity that

SM(K, t) =
1

n
ȳTNȳ =

1

n
ȳTKȳ

=
1

n2
+

n+∑
i,j

Kij +
1

n2
−

n−∑
i,j

Kij −
2

n−n+

n+∑
i

n−∑
j

Kij

=
∥∥∥ 1

n+

n+∑
i

φ(xi)−
1

n−

n−∑
j

φ(xj)
∥∥∥
K
.

The above equation will show that MD(K) is a special case
of SM(K,ϕ), which demonstrates the effectiveness of our
proposed kernel selection criterion again.
Remark 2. The measure of graph cut and mean discrepancy
are two special case of our SM when ϕ(t) = t, but in our
analysis of the above subsection, we know that ϕ(t) = tr,
r ≥ 1 can used to ignore the noise.
Remark 3. Instead of choosing a single kernel, several au-
thors consider the use of multiple kernels by some criteria,
called multiple kernel learning (MKL), see [Lanckriet et al.,
2004; Kloft et al., 2011; Liu et al., 2017a; 2017b] and refer-
ences therein. Our spectral measure criterion can be applied
to MKL: minµ MS(Kµ, t

r) s.t.‖µ‖p = 1,µ ≥ 0, where
Kµ =

∑k
i=1 µiKi. The above optimization problem can be
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Table 2: Comparison of test errors (%) among our spectral measure criterion (SM) and other five popular ones including 5-fold cross-
validation (CV), efficient leave-one-out cross-validation (ELOO), centered kernel target alignment (CKTA), feature space-based kernel matrix
evaluation (FSM) and eigenvalue ratio (ER). We bold the numbers of the best method, and underline the numbers of the other methods which
are not significantly worse than the best one.

SM CV ELOO CKTA FSM ER
a1a 16.84±1.39 17.02±1.57 16.88±1.41 18.86±1.49 24.72±1.67 16.97±1.52
a2a 17.78±1.28 17.96±1.25 17.94±1.27 18.52±1.26 25.62±1.47 18.99±1.37
anneal 2.69±3.28 3.81±4.11 2.69±3.28 4.75±4.78 5.13±4.18 5.50±4.95
australian 13.71±2.10 13.84±2.18 13.82±2.04 13.91±1.89 44.71±2.47 13.53±2.06
autos 11.81±11.67 11.81±11.67 12.75±11.06 13.71±12.03 12.71±8.06 12.14±11.51
breast-w 3.27±1.01 3.56±1.16 3.59±1.08 3.51±1.05 3.50±1.05 4.26±1.40
breast-cancer 3.18±1.15 3.63±1.16 3.50±1.23 3.63±1.16 3.60±1.14 4.04±1.12
bupa 30.29±3.48 29.10±4.04 30.31±4.27 35.81±3.45 39.77±3.68 29.13±4.46
colic 15.62±3.00 16.47±2.78 15.73±2.97 19.27±2.58 36.42±3.28 17.35±3.09
diabetes 24.22±2.41 24.69±2.71 23.51±2.75 24.85±2.46 35.30±3.00 23.90±2.48
glass 22.09±5.07 21.82±5.68 20.95±4.82 26.41±7.13 43.00±9.22 22.50±5.08
german.numer 24.09±2.15 25.28±2.38 23.81±2.26 26.02±2.16 29.89±2.41 25.33±2.14
heart 16.53±3.27 16.69±3.36 15.95±3.29 18.67±3.78 44.37±5.50 15.98±3.47
hepatitis 15.57±4.68 17.09±5.74 16.63±4.64 15.74±5.00 21.22±5.41 18.91±6.20
ionosphere 4.88±2.10 5.28±2.11 6.42±2.17 11.70±3.43 35.77±4.00 4.86±1.99
labor 13.65±8.10 14.47±8.08 14.82±8.34 15.41±8.80 34.59±8.70 18.82±8.81
pima 23.80±2.14 22.78±2.36 22.51±2.41 24.38±2.28 34.47±2.42 22.78±2.07
segment 0.01±0.00 0.06±0.24 0.20±0.04 0.32±0.03 0.21±0.01 0.24±0.04
liver-disorders 31.94±3.21 29.00±4.11 30.02±4.76 36.27±3.93 40.90±4.10 29.69±4.97
sonar 15.06±4.80 14.26±4.93 13.68±4.43 15.00±5.51 49.32±6.93 18.84±5.75
vehicle 3.02±1.79 3.33±1.77 3.02±1.79 3.77±1.51 53.32±3.38 5.52±2.44
vote 4.31±1.71 4.78±1.74 4.82±1.73 5.25±1.72 6.37±3.96 7.80±2.33
wpbc 23.10±4.58 22.83±4.32 21.93±4.45 21.87±4.13 22.13±4.19 21.87±4.13
tic-tac-toe 10.10±1.93 10.28±1.66 9.78±1.66 33.62±5.31 34.44±2.04 14.62±2.05
wdbc 2.29±1.15 2.43±1.07 2.73±1.11 2.82±1.20 37.49±3.83 4.75±1.66

efficiently solved with gradient-based algorithms. However,
in this paper, we mainly want to verify the effectiveness of our
spectral measure criterion. Therefore, in our experiments, we
focus on comparing our criterion with other popular kernel
selection criteria.

5 Experiments
In this section, we will empirically analyze the performance
of our proposed spectral measure criterion SM(K, tr) (SM).

The evaluation is made on 25 publicly available data set-
s from UCI, StatLib and Weka Collections seen in Table 2.
For each data set, we run all methods 50 times with ran-
domly selected 70% of all data for training and the oth-
er 30% for testing. The use of multiple training/test parti-
tions allows an estimate of the statistical significance of dif-
ferences in performance between methods. Let Ai and Bi
be the test errors of methods A and B in partition i, and
di = Bi − Ai, i = 1, . . . , 50. Let d̄ and Sd be the mean
and standard error of di. Then under t-test, with confidence
level 95%, we claim that A is significantly better than B (or
equivalently B significantly worse than A) if the t-statistic

d̄
Sd/
√

50
> 1.676. All statements of statistical significance

in the remainder refer to a 95% level of significance. Ex-
periments are conducted on a Dell PC with 3.1-GHz 4-core
CPU and 4-GB memory. We use the popular Gaussian ker-

nels K(x,x′) = exp
(
−‖x−x

′‖22
2τ

)
as our candidate kernels,

τ ∈ {2i, i = −15,−14, . . . , 15}. In this paper, we mainly
focus on choosing the kernel selection, so we set the regu-
larization parameter λ = 1 for all methods. The learning
machine we used is LSSVM.

In the first experiment, we compare the performance of
our proposed SM criterion with five popular kernel selec-
tion criteria: 5-fold cross-validation (CV), efficient leave-
one-out cross-validation (ELOO) [Cawley, 2006], centered
kernel target alignment (CKTA) [Cortes et al., 2010], fea-
ture space-based kernel matrix evaluation (FSM) [Nguyen
and Ho, 2007] and the latest eigenvalue ratio (ER) [Liu and
Liao, 2015]. For each data set, we choose the kernel parame-
ter τ by each kernel selection criterion on the training set and
then evaluate the test error for the chosen parameters on the
test set. In this experiment, we set r = 3. We will explore the
influence of r later. Table 2 reports the average test errors that
can be summarized as follows: (a) SM is significantly better
than FSM and CKTA on nearly all data sets. This can be ex-
plained by the fact that FSM and CKTA don’t have theoretical
guarantee for special learning algorithm, so the kernels cho-
sen by these criteria can not guarantee good generalization
performance; (b) SM is better than CV and ER on most data
sets. In particular, SM is significantly better than ER (or CV)
on 15 (or 11) of 25 data sets, but only 4 (or 5) sets significant-
ly worse on the remaining data sets; (c) SM gives compara-
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Table 3: Comparison of run time (second) among our proposed SM
and other five ones including CV, ELOO, CKTA, FSM and ER.

SM CV ELOO CKTA FSM ER
a1a 63.77 704.50 217.03 87.51 79.71 422.71
a2a 124.53 1995.76 810.87 172.28 156.68 1558.70
anneal 0.28 4.60 0.84 0.43 0.55 1.36
australian 8.30 111.31 30.33 11.34 9.51 52.53
autos 0.10 2.18 0.23 0.17 0.29 0.37
breast-cancer 8.05 104.55 27.13 11.10 9.36 47.68
breast-w 8.59 105.39 29.77 11.80 10.11 49.86
colic 1.55 25.72 6.52 2.15 2.17 11.60
glass 0.33 5.74 1.15 0.53 0.66 2.00
heart 1.02 14.71 3.66 1.12 1.20 6.33
hepatitis 0.38 6.55 1.42 0.58 0.70 2.44
ionosphere 1.59 24.60 6.08 2.03 2.06 10.60
labor 0.16 2.88 0.42 0.28 0.42 0.67
pima 10.99 137.19 36.60 15.11 12.74 62.45
segment 7.50 91.73 23.83 10.49 8.93 42.63
diabetes 10.70 134.71 36.26 14.90 12.51 62.46
german.numer 21.80 249.98 72.63 29.59 26.27 127.51
liver-disorders 1.37 21.04 5.46 1.91 1.94 9.27
sonar 0.62 10.53 2.34 0.87 0.98 4.06
vehicle 2.03 35.64 9.35 2.86 2.85 15.95
vote 2.03 34.43 9.33 2.79 2.81 15.92
wpbc 0.52 9.06 2.07 0.76 0.92 3.33
bupa 1.36 21.09 5.34 1.85 1.88 9.19
tic-tac-toe 18.93 224.13 63.10 26.13 23.04 107.12
wdbc 5.75 61.32 19.18 7.86 6.80 33.65

ble results with ELOO. In particular, SM is significantly bet-
ter than ELOO on 9 data sets (autos, breast-w, breast-cancer,
hepatitis, ionosphere, labor, segment, vote and wdbc) and is
significantly worse on 8 data sets (diabetes, glass, heart, pima,
liver-disorders, sonar, wpbc and tic-tac-toe). The run time of
SM, CV, ELOO, CKTA, FSM and ER are reported in Table
3. It turns out that SM is much faster than CV, ELOO and
ER, and gives comparable results with CKTA and FSM. The
above results manifest that SM can guarantee generalization
performance and has high computational efficiency as well.

In the following experiment, we explore the influence of
the parameter r of SM. Figure 1 plots the average test errors
with different r (due to space limit, we randomly select 2
data sets). For each fixed r, we choose the kernel parameter
τ by SM on the training set, and evaluate the test errors for
the chosen parameters on test set. We find that the optimal r
belong to [2, 5] on most data sets. And we can also find out
that we can randomly set r = 2, r = 3 or r = 4 in practice
without sacrificing accuracy.

6 Conclusion
In this paper, we define a new spectral measure of a ker-
nel matrix, which can be effectively calculated in O(n2)
time complexity. With the spectral measure, we can bound
the generalization errors of LSSVM and SVM, and propose
the kernel selection criterion by minimizing the derived gen-
eralization error bounds, of which the minimum graph cut
and maximum mean discrepancy are two special cases. The
high computational efficiency and theoretical guarantee of the
spectral measure may bring a new perspective on designing
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Figure 1: The test errors of SM criterion with different r. For each r,
we choose the kernel by SM on the training set, and evaluate the test
errors for the chosen parameters on test set. (Due to space limited,
we randomly select 2 data sets)

kernel selection criterion using spectral analysis.

Appendix A: Proof of the Theorem 1
To prove Theorem 1, we first prove the following Lemma:
Lemma 1. If fS is the solution of LSSVM, then

1

n

n∑
i=1

yifS(xi) ≥ c0 · SM(K,ϕ). (2)

Proof. Note that (fS(x1), . . . , fS(xn))T = Kα where α =
[K + λI]−1y. Thus

n∑
i=1

yifS(xi) = yTKα = yTK[K + λI]−1y. (3)

Let (βi,ui) be the spectral decomposition of K, then we have

yTK[K + λI]−1y =
n∑
i=1

βi
λ+ βi

〈y,ui〉2. (4)

Since Tr(K) ≤ |K|1 = C, we know that βj

C ≤
Tr(K)
C ≤ 1.

According to Equation (4), we have yTK[K + λI]−1y =∑n
i=1

βi/C
βi/C+λ/C 〈y,ui〉

2 ≥
∑n
i=1

βi/C
1+λ/C 〈y,ui〉

2. Note that
λi = βi/|K|1 = βi/C, vi = ui, where (λi,vi) is the spectral
decomposition of N, thus

yTK[K + λI]−1y ≥
n∑
i=1

λi
1 + λ/C

〈y,vi〉2. (5)

From the assumption ϕ(λi) ≤ λi, Equations (3), (4) and
(5), we have

∑n
i=1 yifS(xi) ≥

∑n
i=1

ϕ(λi)
1+λ/C 〈y,vi〉

2, which
completes the proof.

Theorem 3 (Theorem 8 [Gao and Zhou, 2013]). For any
δ > 0, with probability at least 1− δ over the random choice
of sample S with size n ≥ 5, every f ∈ HK satisfies the
following bound:

Pr
D

[yf(x) < 0] ≤ 2

n
+ inf
θ∈(0,1]

[
Pr
S

[yf(x) ≤ θ] +

7µ+ 3
√

3µ

3n
+

√
3µ

n
Pr
S

[yf(x) ≤ θ]
]
,

where µ = 8
θ2 lnn ln(2n) + ln 2n

δ .
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Proof of the Theorem 1. Note that PrS [yfS(x) ≤ θ] =
1
n

∑n
i=1 1[yifS(xi)−θ], where 1[t] = 1, if t < 0, otherwise

1[t] = 0. Thus, it is easy to verify that

Pr
S

[yfS(x) ≤ θ] ≤ 1

n

n∑
i=1

max {0, 1− yifS(xi) + θ} . (6)

From the assumption that HK ranges in [-1,1], we have 1 −
yifS(xi) + θ > 0. Thus, by Equation (6), we have

Pr
S

[yfS(x) ≤ θ] ≤ 1

n

n∑
i=1

(1− yifS(xi) + θ). (7)

According to Equation (7) and Equation (2), we have

Pr
S

[yfS(x) ≤ θ] ≤ 1 + θ − 1

n

n∑
i=1

yifS(xi) ≤

1 + θ − c0 · SM(K,ϕ). (8)

Substituting Equation (8) to Theorem 3, we have

Pr
D

[yfS(x) < 0] ≤ 2

n
+ inf
θ∈(0,1]

[
[1 + θ − c0 · SM(K,ϕ)] +

7µ+ 3
√

3µ

3n
+

√
3µ

n

]
.

This completes the proof for Theorem 1.

Appendix B: Proof of the Theorem 2
Similar with the proof of the Theorem 1, we first prove the
following lemma:
Lemma 2. If fS be the solution of SVM, then

1

n

n∑
i=1

yifS(xi) ≥ C
(

SM(K,ϕ) +
d

n

)
,

where d = min{−1, 1− 1
2λ}.

Proof. Note that fS(x) =
∑n
i=1 αiK(xi,x), where α is the

solution of the dual form of SVM. Thus, we have

1

n

n∑
i=1

yifS(xi) =
1

n
yTK(y ⊗α), (9)

where ⊗ is the entrywise matrix product (also known as the
Hadamard product). Note that

yTK(y ⊗α)− yTKy

=
[ ∑
yi=yj

αiKij −
∑
yi 6=yj

αiKij

]
−
[ ∑
yi=yj

Kij −
∑
yi 6=yj

Kij

]
=
[ ∑
yi=yj

αiKij +
∑
yi 6=yj

Kij

]
−
[ ∑
yi 6=yj

αiKij +
∑
yi=yj

Kij

]
≥
∑
i,j

min{αi, 1} ·Kij −
∑
i,j

max{αi, 1} ·Kij

=
∑
i,j

(min{αi, 1} −max{αi, 1}) ·Kij

=
∑
i,j

ciKij , (10)

where ci = min{αi, 1} − max{αi, 1}. Note that 0 ≤ αi ≤
1

2λ , so we can obtain that

ci = min{αi − 1, 1− αi} ≥ min{−1, 1− 1

2λ
} =: d

From Equation (10), we have

yTK(y ⊗α)− yTKy ≥ d
∑
i,j

Kij = d · C.

Thus, we can obtain that yTK(y ⊗ α) ≥ dC + yTKy =
dC +

∑
i βi〈yi,ui〉2 = dC + C

∑
i λi〈yi,vi〉2 ≥

dC+C
∑
i ϕ(λi) ·〈yi,vi〉2, where (βi,ui) is the spectral

decomposition of K. This completes the proof.

Proof of Theorem 2. According to Lemma 2 and Equation
(7), we can obtain that

Pr
S

[yfS(x) ≤ θ] ≤ 1 + θ − C · SM(K,ϕ)− Cd

n
. (11)

Substituting Equation (11) to Theorem 3, it is easy to com-
plete the proof.
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