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Abstract

Model selection is one of the key issues both in
recent research and application of kernel meth-
ods. Cross-validation is a commonly employed
and widely accepted model selection criterion.
However, it requires multiple times of train-
ing the algorithm under consideration, which is
computationally intensive. In this paper, we
present a novel strategy for approximating the
cross-validation based on the Bouligand influ-
ence function (BIF), which only requires the so-
lution of the algorithm once. The BIF measures
the impact of an infinitesimal small amount of
contamination of the original distribution. We
first establish the link between the concept of BIF
and the concept of cross-validation. The BIF is
related to the first order term of a Taylor expan-
sion. Then, we calculate the BIF and higher or-
der BIFs, and apply these theoretical results to
approximate the cross-validation error in prac-
tice. Experimental results demonstrate that our
approximate cross-validation criterion is sound
and efficient.

in kernel methods. A related problem is the evaluation of
the generalization ability of the learning algorithms. &ef
t, it is common to select the optimal hyper-parameters by
choosing the ones with the lowest generalization error.

Obviously, the generalization error is not directly com-
putable, as the probability distribution generating theada

is unknown, therefore it is necessary to resort to estimates
of its value. This error can be estimated either via testing
on some data which has not been used for learning (hold-
out testing or cross-validation techniques) or via a bound
given by theoretical analysi€hapelle et a].2002. To es-
tablish the upper bounds of the generalization error, some
measures are introduced: such as VC dimensi@prik,
2000, Rademacher complexityBértlett & Mendelson
2002, maximal discrepancyBartlett et al, 2002, regular-
ized risk Scholkopf & Smola20032), radius-margin bound
(Vapnik, 2000, compression coefficientL(xburg et al,
2009 and eigenvalues perturbatiday et al,, 2013.

While there have been many interesting attempts to use
the above bounds or other techniques to pick the hyper-
parameters, the most commonly used and widely accept-
ed methods for selecting the hyper-parameters are still
thek-fold cross-validation (KCV) and leave-one-out cross-
validation (LOO). However, KCV and LOO requires the
solution of the algorithm under consideration several §me

1. Introduction which are computationally expensive. For the sake of ef-

ficiency, some approximate LOO criteria for some spe-
cific algorithms are given: such as generalized cross-
validation (GCV)Golub et al, 1979, influence function

Kernel methods, such as SVMsteinwart & Christmann
2008 Vapnik, 2000, least squares support vector machine
(LSSVM) (Suykens & Vandewallgl 999 and support vec- ! X
tor regression (SVR)Shawe-Taylor & Cristianini200q9, ~ (Debruyne etal. 200§, generalized approximate cross-
have been widely used in data mining and machine learn¥@lidation (GACV) Wahba et al.1999 and span bound
ing. The performance of these kernel methods greatly de(Chapelle eta).2002).

pends on the choice of some hyper-parameters (such as thethis paper, we will present a novel strategy for approxi-
kernel parameter and regularization parameter), thezeformating thek-fold cross-validation based on the Bouligand
the model selection problem becomes an important topighfluence function (BIF) Christmann & Messem2008.
R o ) _ To our knowledge, an effective strategy for approximat-
Proceedings of the?1°" International Conference on Machine ing the k-fold cross-validation error (for alt) for kernel

Learning Beijing, China, 2014. JMLR: W&CP vol 32. Copy- . ) .
rigﬁggi sy't?]ge autlr?:r(s). volume °PY" methods has never been given before. We establish the link
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between the concept of BIF and the concept of KCV, and4. In Section 5, we show how to use these BIFs to approxi-
present a novel method to calculate the BIF and higher ormate the cross-validation estimator in practice. We empiri
der BIFs at the continuous distribution. Furthermore, wecally analyze the performance of our proposed approximate
evaluate these BIFs at the sample distribution and use theseoss-validation criterion in Section 6. We end in Section 7
BIFs to obtain an approximation of KCV. Our method re- with conclusion.

quires the solution of the algorithm only once, which can

dramatically improve the efficignc_y. I_Experimental r_esult-z_ Preliminaries

s demonstrate that our BIF criterion is a good choice for

model selection. Given asample st = {(x;, y;) }_, of sizen drawn iden-
tically and independently from a fixed, but unknown prob-
Related Work ability measureP on Z = X x Y, X C R%, Y C R for

regression, any C {+1, —1} for classification.
In recent years, some researcher study the robustness of the

kernel methods. In the field of robust statistics the influ-Let K : & x X — R be a kernel, that isi{" is symmetric
ence function lampel et al. 1989 is introduced in order ~and for any finite set of pointgz, ..., z,} C &, the ker-
to analyze the effects of outliers on the algorithm. Thisnel matrix K = [K (z;, z;)];",_, is positive semidefinite.
influence function is defined for continuous distribution- The reproducing kernel Hilbert space (RKH&) associ-
s that are slightly perturbed by adding a small amount ofited with the kernek is defined to be the completion of
probability mass at a certain place. Christmann and Steinthe linear span of the set of functiofé(x) = K(=z,-) :
wart (Christmann & Steinway2004 2007, Steinwartand ~ € X'} with the inner product denoted &s-) i satisfying
Christmann $teinwart & Christmann2008, Christmann  (®(z), ®(z'))x = K (z, ') (Aronszajn 1950.

et al Christmann et a.2009, and Messem and Christ-
mann Messem & Christmanr2010 show that SVMs for
classification and regression have a bounded influence

function under some assumption of the loss function. De-fy k. p +bax.p = argmin EpV(y — f(x) — b) + \|f||%,
bruyne et al Debruyne et a).2008 presented a method to fEH bER

estimate the LOO via the influence function. Christmann hereV(.) i | functi dis th larizati
and MessemChristmann & Messen2008 generalize the whereV'(-) is a loss function ana 1s the regufarization
notion of influence function, and introduce a new notionparameter. When the sample distributip is used, one

from Bouligand-derivativesRobinson1997) called Bouli- has thatfy k.. + brx.p, =

The operatofA7K+bA7K P — f,\7K7p+b)\7K7p is defined

gand influence function (BIF), which measures the impact &
of an infinitesimal small amount of contamination of the o- arg min — Z V(yi — f(z:) — b) + || flI %
riginal distribution. They show that SVMs have a bounded FeH bR T Ty

BIF with some weaker mptions of | function. . L .
th some weaker assumptions of loss functio Such estimators have been studied in detail, see for exam-

For kernel methods, such as SVM, LSSVM and SVR, theple (Wahba 199Q Vapnik, 2000.

form of the decision function ig () = 3., a:K (z, z.) + II_SSVM (Suykens & Vandewallgl 999 Cawley & Talbot

b. The above work about the robust statistics of kerne . I .
. . . 2007, e-insensitive support vector regressioanSVR)
methods all ignore the bials However, sometimes the R .
. . . (Shawe-Taylor & Cristianini 2000 and quadratic e-
biasb plays an important role in the performance of kernel. o . .
insensitive support vector regression (quadratiSVR)

methods. In this paper, we consider thand present a the- LT . :
. . .. (Shawe-Taylor & Cristianini2000 are only different in
oretical result to calculate the BIF at the continuous distr the choice of the loss function. For LSSVMI(r) — 12,

bution. This result generalizes the result of Christmarth an .
Messem Christmann & Messen2008 with a much sim- fso\r/FiSVV(: ‘i(&;{??}i{ |:|0;>§’ 0}, and for quadratie-
pler proof. Debruyne et aDebruyne et a).2008 present ' o ’ '
a method to calculate the higher order IFs, and apply thesbnless specially stated, we respectively wiffex » and
results to approximate the LOO. We generalize the results, x p asfp andbp in the following.

of IFs to BIFs, and apply these results of BIFs to approxi-

mate the cross-validation error in practice. 3. A Strategy for Fast Approximation of

The rest of the paper is organized as follows. In Section Cross Validation

2, we introduce some elementary facts. In Section 3, we ) ) i )

introduce the concept of BIF, and give a novel strategy for‘_n this sectlonZ we introduce the Bouligand m_fluence func-
approximating the cross-validation error. A method to cal-tion (BIF) (Christmann & Messen200§ and Higher order

culate the BIF and higher order BIFs is proposed in Sectiorfp!FS: and show how to use these BIFs to approximate the
k-fold cross-validation (KCV).
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3.1. Bouligand Influence Function The right hand side now only depends on the full sample
P, andAg,. Given theBIF;(As;; fx x + bk, Pn), the

Definition 1. Let P be a distribution and” be a functional ¢ 4 /o< \ ~iidation can be written as

T : P — T(P). Then theBouligand influence function

(BIF) of T" at P in the direction of a distributiord) # P is 1
defined as k-CV = Z Z ﬁ(yj, fp, +bp,+
i=1x;ES;
BIF(Q;T, P) = ﬁ_{%T((l_E)PtEQ) _T(P)- (=M \’ BIF;(As,; fax + bas, Pn)
; n—M 7! )’

The BIF measures the impact of an infinitesimal smal- _ _ . .
| amount of contamination of the original distributidh ~ Where((-, -) is an appropriate loss function. It only requires

in the direction ofQ on the quantity of"'(P). the solution of the algorithm once.
DenoteP,. ¢ = (1 — €)P + €Q. One can see that the BIF Note that—M/(n — M) = —1/(k — 1), the‘(k(%ll))jﬂ‘ is
BIFs can be defined too: order approximation of the Taylor expansion to effectively
Definition 2. Let P be a distribution and” be a functional  approximate thé-fold cross-validation:
T : P — T(P). Then theith order BIF of T at P in the i
direction of a distribution() is defined as 1
w OV~ 3 S 0y + bt
8 n =1 :BjGSi
BIFk(Q7T7 P) = aTT(PE,Q”e:O- r »
€ Z —-M BIF,(As,; [ x +b/\,K;Pn))

. . . n—M p! ’

If all BIFs exist then the following Taylor expansion holds: p=1

i Remark 1. In our experiments, when the order of Taylor
T(Peg)=T(P)+ Y FBIF(QT.P). (1)  expansion > 3, we find that the value of the approximate
i=1 " cross-validation error is almost the same as original one.

3.2. A Strategy for Approximating the KCV using BIF 4. The Calculation of BIFs

Assume the sample sét = {(z;,y;)}", is divided into
k disjoint parts{S;}*_,. Let P, be the empirical distri-
bution of the sampl&' without the observations;, that is
P Si(x) = L if @ € S\ S;, otherwise 0, wher@/ is

the size ofS;.

In this section, we first provide a novel method to calculate
the BIF and higher order BIFs at the continuous distribu-
tion P, and then estimate these BIFs at the specific sample
distributionP,.

For k-fold cross-validation, thé"(P;°?) should be com- 4.1, The Calculation of BIFs at Continuous
puted for everyi. This means that the algorithm under Distribution
consideration has to be executedimes, which is com-

putationally intensive. By the definition of thek-th order BIF of f\ x + by x,

k=1,2,..., itis easy to verify that
If the BIFs of T' can be calculated, we can provide a fast
alternative. First note that

posi = <1 < NL))BHF—MMA&’
e e LetVp = V(y — fp(x) — bp)), the first order BIF at the

whereAg, is the sample distribution corresponding to the I’ Will be given in the following theorem.

samplesS;, that is, Ag,(z) = 45 if € S;, otherwise Theorem 1. Let % be a RKHS of a bounded continuous

0 0
BIF,(Q; fax + by, P) = %fpé@le:o + %bPE,Qk:o-

0. Thus, takingQ = Ag,, e = —-2L., P. o = P75,  kemelK on X. Furthermore, letP be a distribution on
P = P, andT = f) x + by k, Equation {) gives X x Y, then the BIF off\ x + b x in the direction of a
distribution@ # P is
fP;SL' + bP;Si - an + anJr P 9
i ( -M >j BIF;(As,; fax + b, Pn) (2) [afPe,Qk:o, abPe,Qk:o] =
o\n-M 7t LY [-2Mfp + Eq(Vp®()), EqVp),
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where the operatof. : (H,R) — (H,R) is defined by Denotef = (f(x1),..., f(zn)T, 1 = (1,...,1)7T, ker-
nel matrixK = [K (z;, x;)] Note that

n
ij=1"

L(f.0) = |2Af + Ep(Vp f(2)2()) + DEp (V5 (),

Ep(VEf(2)) +bER(VE)). L. D(a)

Ju

o[ Mat K SKL)[f
B 1t 1 b |’

3|

The proof is given in Appendix A. L(f,b)(zn)
Remark 2. The first order BIF of the decision function
without the bias termiy x = 0) has been given in
(Christmann & Messen2008. Our above theorem gen-
eralizes their result. Moreover, our proof is much simpler.

which means that the matrix

1 1
oL, ::2[ Mot oK Kl }

19T 1
n

The higher order BIF is given in the following theorem: s the finite sample version of the operafoat P,,. Denote
Theorem 2. Let # be an RKHS of a bounded continuous
kernel K on X. LetV be a convex loss function such that
the third derivative i9). Furthermore, letP be a distribu-
tion onX x Y, then the(k + 1) order BIF of f x + by x _, 0 9
in the direction of a distributior) £ P is

0
%fPE,AS% le=0
= (Efpe,Asi (@1)|e=0s - - - %fpmsi (@n)|e=0)".
From Theoreni, it is now clear that

6]
[ EfPEgAS% |6:0

0
&bPE,ASi |€=0

0 0
[Wfﬁ,@k:o, WbP€,Q|e=0:| =
(k+ 1)L [2Ep(BIFL(Q; fa i + ba, P)VE (@())) -
Eq(BIFy(Q; fax + by, P)Vp®(2)),

[ LK eSlg— A
:Lnl[ il *) ]Tg I,
Mgsil

Ep(BIF,(Q; fa,x + b, P)VE)— whereg = (g1, ..,90)", 9i = i — fp, (®:) = bp,, gs, =
" (gsi,l, s ,gS“n)T,gS“j = gj if T; (S Si, otherwisd),
EQ(BIFk(Q7 f)\,K + b)\,K7 P)VP):| . an = (an ($1), ceey an (w"))T’ S’i denote then x n

matrix as[S;];x = 1if x, € S;, otherwise 0, an® is

the entrywise matrix product (also known as the Hadamard
L(f,b) = |2\ + Ep(VE f(2)®(@)) + BEp(VED(x)), ~ Product).

From Theoren®, one sees similarly that the higher order
terms can be computed

where the operatof : (H#,R) — (H,R) is defined by

Ep(Vif(z)) + bEP(V;;)]

The proofis given in Appendix B. 2 _fp le=
OFF1c E’AS% e=0 B
Remark 3. For the common loss functiolf, such as 9 |e— -
9FF1c PC'ASi e=0

V(r) =r?andV(r) = (max(|r| —¢,0)?2, the third deriva- | .
tive is0. Thus, the assumption of the above Theorem is (k+1)L;" { ﬁlKé’k - MlKT' Sibk ] ,
feasible. "L Rl g1 b,

4.2. The Calculation of BIFs at the Sample Distribution where

In this subsection, we will estimate the BIF at the sample ~ bx = (BIFk(ASi; I ok, Po)(T1)), -
distribution P,, to obtainBIF;(As;; fx x + bx i, Pn). T
BIF(Asi o + b Pa)(@a))

4.2.1.LSSVM BIFy(As;; farx + a5, Po)(x;) =
First consider taking the least squares 1653) = r2. 0 0

From Theorent, the operatod. at P,, maps any(f,b) € e fons, (®i)le=o + grzbens, (T5)]e=o,
(H,R) to

5 o br.s; = (bk,Si1s -+ b,sin) Ty brysi g = by if & €S,
L(f,b) = [2)\f + - Z f(z)®(z;) + — Z d(x;), otherwise 0.
i=t j=1 For thek-fold cross-validation, defing31 F'M LSSV M;]
thek x n matrix with

2 n
=3 i) +2b].
=1 [BIFMLSSV M,); j = BIF;(As,; fa,x + b, Po)(x;).
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According to EquationZ), by cutting it off at some step,
we have
fP;Si (z;) + bP;Si ~ fp,(@;) +bp,+
./ -1\°1
> (—k — 1) SIBIFMLSSVM,] ;.

s=1

3)

4.2.2. QIADRATIC e-SVR

For the quadratie-insensitive loss we have that

0, if |r| <e
Vir) = 2
(r—e), if|r| >e
0, if |r| <
and thusV’(r) = . Irl<e Vi) =
2(r—e), Iif|r| >e

if |r] <e

0,
2, ifjr]>e

exist, but in practice the probability that= ¢ is 0, so we
can ignore this possibility.

Note that the derivatives in = ¢ do not

Similar with the least squares loss, it is easy to verify that

N, +

1
n

[KeB] [KeDBjl

1
" T
v vl

L, = [
is the finite sample version of the operatbrat sam-
ple P,, where B denote the matrix containing” (y; —
fp,(x;) — bp,) at every entry in the-th column, and
v=(v1,...,00) v =V"(yi — fp,(x:) — bp,).

From Theoreni, we have

Gefroag le=o | _ Ll[ LK e Su—\fp,
0P, g, le=0 " s, 1
whereu = (ul,...,un),ui = VI(yZ — fp?(ﬂ}i) —
bp,), us, = (us;1,---,us;n)sus,; = ujifx; €

S; otherwise). By Theoren, the higher order terms can
be computed,

)
[ Wfpﬂsm le=0 1

2 _bp |e=
OFFTePe,ag, e=0

K ¢ B]b fAZKoBoSibk

1
1| oal
(k+1)S; [ ' 1oThy, — ﬁvabk

wherev = (v, ...,v,) T, v, = V' (y; — fp, (x;) — bp,),

VS;,5 = Uj if x e Si, otherwise).

For thek-fold cross-validation, letBIFM SV R,] be the
k x m matrix with

[BIFMSVRt]zj = BIFt(AS,L-§ f)\,K + b)\,K,Pn)(:Bj).

From Equation2), we have

fo-si (@) +bp-si ~ fp,(x;) +bp,+

N/ -1\°1
Z(ﬁ) S[BIFMSVR]; ;.

s=1

4

5. Approximate KCV Criteria

The traditionak-fold cross-validation error is given by

k
1
kCV:—E E Uyj, fo- N 4+b -
n (y]’fpn S7r(mj>+ P, Sm)a

i=1ax;ES;

wherel(-, -) is an appropriate loss function. The idea we in-
vestigate is to replace the expliéifold cross-validation by
the approximation in3) for LSSVM and @) for quadratic
e-SVR.

The t¢-th order BIF criterion of the approximate-fold
cross-validation error for LSSVM is defined as

k
1
BIF} = - Z Z €<yjafA,K,P,,L (x;) +br kP, +

=1 CEjESi

t s
“1\* 1
> (ﬁ) E[BIFMLSSVMs]i7j).

s=1

For quadratie-SVR:

k
1
e-BIF} = - Z Z €<yj7 Iag P (25) + by kPt

=1 x;j €Ss;

t s
3 (k_—ll) %[BIFMSVRS]M).

s=1

5.1. Time Complexity Analysis

To computeBI F} ande-BIF}, we needO(n?) to calcu-
late the inversion ofL,,, andO(kn? + tn?) to calculate
the BIF matrices, where is size of the training set is
the fold of cross-validation angdis the order of the Taylor
expansion. Thus, the overall time complexity®f F} and
e-BIF} are bothO(n? + kn? + tn?).

For the traditionak-fold cross-validation method, the al-
gorithm under consideration need to be executdithes,
thus for LSSVM and quadraticSVR the time complexity
are bothO(kn?).

6. Experiments

In this section, we will empirically analyze the perfor-
mance of our proposed approximétéold cross-validation

criterion (BIF£CV).

Yf L., is not invertible, we can use the pseudo-inversé& pf
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Table 1.The average testing errof&) on the classification data sets and the testing mean squaréMSE) on regression
data sets, the order of Taylor expanstoa 3.

Classification EP ELOO 5CV BIF-5CV iocv BIF-10CV 20CV BIFQVY
ionosphere 14.74 3.97 6.65+ 1.47 7.16+ 1.54 8.18+ 1.54 7.16+ 2.07 7.61+ 1.69 8.18+ 1.54 8.07+ 1.68
breast 3.58t 0.38 3.07+ 0.59 3.45+ 0.81 3.45+ 0.81 3.45+ 0.81 3.45+ 0.81 3.45+ 0.81 3.45+ 0.81
diabetes 2422 1.67 23.83+ 1.69 22.24+ 2.47 22.24+ 2.47 22.66+ 2.23 22.66+ 2.23 22.50+ 2.18 22.504+ 2.18
fourclass 22.870.98 19.49+ 2.03 18.19+ 3.32 18.19+ 3.32 18.19+ 3.32 18.19+ 3.32 17.12+2.28 17.12+2.28
australian 13.5H- 1.38 14.29+ 1.81 15.19+ 2.18 15.19+ 2.18 14.09+ 1.96 14.09+ 1.96 14.49+ 2.35 14.49+ 2.35
heart 18.96+ 3.08 19.70+ 4.19 16.56+ 3.35 17.41+ 1.69 16.15+ 3.33 17.85+ 2.25 16.15+ 2.98 17.59+ 3.07
german 25.84+ 2.84 26.38+ 2.31 2552+ 1.45 2552+ 1.45 2528+ 1.38 2528+ 1.38 2528+ 1.38 25.28+1.38
liver 39.424 4.06 31.39+ 3.71 29.71+ 1.86 29.71+ 1.86 29.25+ 2.73 31.21+ 1.29 31.10+ 3.43 31.10+ 3.43
sonar 17.12+ 2.39 16.15+ 3.65 16.92+ 4.49 17.88+ 2.08 17.12+ 4.58 18.62+ 2.45 16.92+ 4.69 17.32+ 2.45
a2a 20.38+ 1.68 18.90+ 1.01 18.98+ 0.95 18.98+ 0.95 19.10+ 0.96 19.10+ 0.96 19.10+ 1.05 19.10+ 1.05
Regression EP ELOO 5CV BIF-5CV 10cv BIF-10CV 20CV BIF-20CV
bodyfat 5.1e-% 3.1e-5 3.9e-5+ 9.9e-6 4.5e-5+ 1.4e-5 4.5e-5+ 1.4e-5 4.5e-5+ 1.4e-5 4.5e-5+ 1.4e-5 4.5e-5+ 1.4e-5 4.5e-5t 1.4e-5
housing 313t 64 243+ 34 239+ 38 239+ 38 23.98+ 3.8 239+ 38 239+ 38 23.9+ 3.8

mpg 124+ 22 9.6+ 15 8.7+ 0.8 8.7+ 0.8 8.7+ 0.8 8.6+ 0.8 8.6+ 0.8 8.6+ 0.8
pyrim 1.2e-2+ 4.0e-3 1.4e-2+ 4.2e-3 1.0e-2t+ 2.9e-3 1.1e-2+ 2.4e-3 1.0e-2+ 2.9e-3 1.1e-2t 2.4e-3 1.0e-2t 2.9e-3 1l.1e-2+ 2.1e-3
triazines 2.0e-2t 2.9e-3 2.2e-2+- 3.3e-3 2.3e-2+ 3.6e-3 2.3e-2+ 4.4e-3 2.2e-2+- 3.2e-3 2.2e-2+3.7e-3 2.3e-2+ 3.1e-3 2.3e-2t 4.4e-3
eunite 700.4+ 118.4 625.8+ 62.1 593.1+ 95.0 592.5+ 95.0 596.9+ 95.8 594.6+ 96.3 596.9+ 95.8 594.6+ 96.2
space-ga 2.7e-2 3.9e-3 1.9e-2t 2.0e-3 1.9e-2t 2.0e-3 1.9e-2t 2.0e-3 1.9e-2t 2.0e-3 1.9e-2t 2.0e-3 1.9e-2t 2.0e-3 1.9e-2+ 2.0e-3
cpusmall 42.0f 13.1 445+ 4.4 429+ 59 429+ 59 429+ 59 4291+ 5.9 429+ 59 429+ 5.9

mg 1.6e-2+ 3.3e-4 1.5e-2t 7.6e-4 1.5e-2+ 9.7e-4 1.5e-2+ 9.7e-4 1.5e-2t 9.7e-4 1.5e-2t 9.7e-4 1.5e-2t 9.7e-4 1.5e-2+ 9.7e-4
abalone 6.4t 0.5 57+05 55+ 0.3 55+ 0.3 55+ 0.3 55+ 0.3 55+ 0.3 5.5+ 0.3

Figure 1.The mean square discrepancies between 5CV and BIF-5CV, H0@\BIF-10CV, 20CV and BIF-20CV with differeit,  is
the order of Taylor expansion.

The evaluation is made on 20 publicly available data set€awley & Talbot 2007 and the latest proposed eigenval-
from LIBSVM Data: 10 data sets for classification and 10ues perturbation criterion (EPY)i( et al,, 2013.

data sets for regression seen in TableExperiments are In our first experiment, we set the order of Taylor expan-

performed on a Dell Vestro PC with 3.4-GHz 8-core CPU _. . ) .
and 8-GB memory, siont = 3 (we will explore the effect of this parameter in

the second experiment). The average testing errors for clas
sification and testing mean square error for regression are
kernels,r € {2%,i = —6,—5,...,7,8}. The regulariza- reported in Tabld. The elements in Tableare obtained as
tion parameteA € {2!,i = —7,—6,...,2}. The learning follows. For each training set, we choose the kernel param-
algorithm considered in our experiments is LSSVM. Foreterr and regularization paramet&rby each criterion on
each data set, we have run all the methods 10 times witkthe training set, and evaluate the testing error for theemos
training and testing data sets be split randomly{54 all parameters on the testing set.

the examples for training and the othe’56or testing).

We useK (z,z') = exp(— ||z —x'||3/27) as our candidate

The results in Tabl& can be summarized as follows: (a) On
most data sets, BIECV gives almost the same testing er-
rors as the traditionatCV, k& = 5,10, 20. In particular, on
breast, diabetes, australian, fourclass, german, a2g; bod
fat, housing, eunite, space-ga, mg and abalone, i&W-
gives the same testing errorsi@V. On the remaining data

6.1. Accuracy

We will compare our proposed BIFEV with the
traditional k-fold cross-validation XCV), the efficien-
t leave-one-out cross-validation (ELOOTdwley, 2006
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Table 2.The average computational time (second), the order of Taydpansiort = 3

Classification EP ELOO 5CV BIF-5CV iocv BIF-10CV 20Cv BIFQY
ionosphere 0.9% 0.01 0.434+ 0.02 0.874+ 0.02 0.474+0.01 2.02+ 0.03 0.66+ 0.01 4.60+ 0.03 1.02+ 0.01
breast 2.9% 0.05 1.42+0.11 2.88+ 0.06 1.70£ 0.04 6.83f 0.15 2.20+ 0.05 14.03+ 0.23 3.2140.08
diabetes 3.5% 0.04 2.10+ 0.09 3.30+ 0.04 2.57+ 0.03 8.17+0.21 3.46+ 0.03 21.63+0.11 5.15+ 0.04
fourclass 4.23+ 0.02 2.50+ 0.08 4.40+0.17 3.31+£ 0.09 11.64+ 0.25 4.39+0.18 26.05+ 0.48 6.524+0.27
australian 2.82£0.17 1.45+ 0.23 2.70+ 0.09 1.71£ 0.03 6.81+ 0.04 2.19+ 0.01 13.76+ 0.04 3.174+0.08
heart 0.58+ 0.01 0.304+ 0.01 0.584+ 0.01 0.324-0.02 1.31+£ 0.02 0.45+ 0.01 2.79+ 0.03 0.734+0.02
german 7.02+ 0.06 3.85+0.13 6.78+ 0.12 4.65+ 0.10 16.89+ 0.18 6.10+ 0.11 38.88+ 0.34 8.99+ 0.07
liver 1.04+£0.04 0.424+0.02 0.81+ 0.01 0.464+ 0.01 1.96+ 0.02 0.62+ 0.02 4.024+0.08 0.974+ 0.02
sonar 0.54+ 0.01 0.25+ 0.01 0.484+ 0.01 0.234+ 0.00 1.05+ 0.02 0.36+ 0.02 2.24+ 0.03 0.574+ 0.01
a2a 58.44+ 0.21 31.87+ 0.20 52.66+ 0.15 37.50+ 0.39 142.92+ 0.70 46.57+ 0.27 308.06+ 0.96 64.85+ 0.38
Regression EP ELOO 5CV BIF-5CV locv BIF-10CV 20CvV BIF-20CV
bodyfat 0.76+ 0.01 0.30+ 0.04 0.59+ 0.03 0.3240.02 1.28+ 0.06 0.45+ 0.02 2.61+ 0.16 0.7240.04
housing 1.78+ 0.01 0.86+ 0.03 1.60+ 0.04 0.91+ 0.02 3.63+0.12 1.224+0.02 8.38+0.20 1.85+ 0.01
mpg 1.01£ 0.02 0.524+ 0.04 0.99+ 0.01 0.574+0.01 2.31+£ 0.00 0.77+0.01 4.94+ 0.02 1.19+ 0.01
pyrim 0.23+0.01 0.09+ 0.01 0.204+ 0.01 0.09+ 0.01 0.404+ 0.01 0.15+0.01 0.784+ 0.01 0.2440.01
triazines 0.39+ 0.03 0.2240.01 0.464 0.01 0.214 0.00 0.94+ 0.02 0.30+ 0.00 2.00+ 0.03 0.504 0.01
eunite 0.17+ 0.07 0.424+0.03 0.83+ 0.07 0.434+ 0.02 1.75+ 0.08 0.61+ 0.02 3.83+ 0.20 0.944 0.04
space-ga 97.7% 0.15 64.89+ 6.29 93.65+ 0.45 69.84+ 0.62 252.3+ 0.77 85.49+ 0.28 600.1+ 0.42 117.8+ 0.2
cpusmall 73.65+ 0.03 41.69t 0.25 68.49+ 2.48 48.38+ 1.28 172.2+ 5.66 60.21+ 0.82 395.8+ 11.9 85.01+ 1.33
mg 16.25F 0.05 8.49+0.17 13.36+ 0.47 8.99+ 0.07 37.17+ 0.46 13.00+ 0.04 81.72+0.73 19.15+ 0.02
abalone 2755 3.52 152.8+ 3.45 253.2+ 2.66 168.7+ 1.92 730.4+ 3.62 196.7+ 1.56 1760.9+ 8.05 255.1+ 3.41

sets, both BIF:CV andkCV give the similar results. Thus, 7. Conclusion

it implicate that the quality of our approximation based on .

the Bouligand influence function is quite good. (b) BIF- We Propose a novel strategy for approximating khtald
kCV gives much better results than EP on most data set$"0SS-validation error based on the Bouligand influence
In particular, BIF-CV outperforms EP on 16 out of 20 da- 'unction (BIF), which can be computed efficiently. Link
ta sets, and also give results close to results of EP on thtéetweenthe concept of BIF and concept of cross-validation

remaining 4 sets. (c) For classification, BtFand ELOO is considereq. The.calculation of the higher order BIFs

give comparable results. However, for regression, BIF- and a recursive relation between subgequent terms are pro-

outperforms ELOO on 8 out of 10 data sets. posed. It is shown that these theoretical results can be ap-
plied in practice to approximate the cross-validation erro

In the second experiment, we will explore the effect of theExperiments indicate that our proposed criterion based on

parametet (the order of Taylor expansion). The discrepan-BIF is a good choice for model selection.

cies betweekCV and BIF£CV with differentk are given

in Figurel (due to space limit, we randomly select 5 clas-

sification data sets and 5 regression data sets).

Future work will extend our method to other kernel based
methods, such as kernel-based logistic regression and
SVM.

The plots in this figure are obtained as follows. For each

training set, we choose theand A by cross validation on  Acknowledgments

the training set. Plotted are the mean square error of the . ) . .
rameters on the validation samﬁﬂg reS,i=1,... .k ence Foundation of China under grant No. 61170019, the

We can find that, on most data sets, the discrepanciés pdlatural Science Foundation of Tianjin under grant No. 11J-
tweenkCV and BIF4CV is equal 0 when > 3. Thus, we CYBJCO00700, and Tianjin Key Laboratory of Cognitive

can select = 3 in practice without sacrificing accuracy. ~ COmputing and Application.

6.2. Efficiency Appendix A: Proof of Theorem 1

The running time are reported in Take The results in  Proof. From Theorem 2 in\(ito et al, 2004, we have

Table2 can be summarized as follows: (a) The time cost of , ,
BIF-kCV is much lower than that GfCV. Thus, BIFACV 2Afp = Ep[Vpo(z)],0 = EpVp. )
significantly improves the efficiency &fCV for model s-

election. (b) BIF-5CV and BIF-10CV are faster than EP, L6t fe = [P, andbe = bp, ,. Note thatP o = (1
BIF-20CV and EP are comparable in computing time. (c)6)£ T €. thus we can obtain that

BIF-5CV and ELOO give the similar results.

2Mfe = (1 = OEp[V!®(z)] + Eq[V/®(x)]  (6)
0=(1—¢EpV +eEqoV,, @)

whereV, = V(y — fe(x) — be).
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Taking the first derivative on both sides @) {vith respect
to e yields

0
2N fo =
(1 = OBpl (o fela) + bV 0(x)] ~ Ep(V, ()
FeBql- (o fl@) + S bV B(@)] + Bo(V/®(w))
@

Sete = (0 and according to5), we have

0 0 0
2)\Ef6|6:0 + EP[(Efe(m”e:() + Ebek:o)vg@(m)]

— —2\fp + Eq(Vo(@)).
©)

Taking the first derivative on both sides @ {vith respect
to e yields

0= (1= OEpl(——-fu(@) — —-b )V ~EpV!
Oe Oe
5 (10)
+eBol(— fe(@) — 5-b)V/] + EqV..
Sete = 0 and according to5),
8 a " !
EP[(&fe(J’”e:O + &b6|6=0)VP] = IEQVP- (11)
By the definition of the operatorL, the system
of linear equations, 9 and (1), can be writ-
ten as L[%f€|€=07%bele=0i| = [ - 2)‘fP +
Eq(Vp®(z)),Eq(Vp)]. .

Appendix B: Proof of the Theorem 2

Proof. First we proof the following for al < k € N:

0 0
- e)EpHanE(m) o

)+ bV ()]
bV, ()]~

0 0
FEQl(r o fe() +

0 0 "
Eql(fe(@) + 5b VD))

8 1
2\ g fe = b )V @(x)]+

KEp((5r—

(12)

Taking the derivative on both sides d8)(with respec-
t to e yields 2A\2-f. = (1 — e)Ep[— (32 fe(z) +
Zb )V ®(x)] + QEP (£ fe(z) + Zb)V/®(x)] +
eBo[— (g7 fe(x) + gr:be) VI ®(2)] + 2EQ VY (5. fe(x) +
£b.)®(z). Thus fork = 2, the Equation12) is satisfied.

Taking the derivatives of both sides ih3),

0

2)\me

= (1~ Ep [ (g fe(a) + bV B(a)

bV b(a)

v ()
bV B (a)

from which it follows that (2) holds fork + 1 indeed. Set

e=0:

0
2)\er|6=0+

0 0
Epl(grrrfe@emo + rrr-beleo) VED(@)] =

+ (b DEp[( o fela) +

(k+ 1)EP[(%fe(a:)|e=o + %bek:o)vg@(aj)]—

0 0
(k+ DEq (7. fe(@)le=0 + Fz-bele=0) VP ().
Taking the derivative on both sides dfQ) and setting: =
0, we have

0 0
a_Qfe(m)|e:() - 6_2

€

EP[*( b5|6:0)V£] =

8

fe(®)|e=0 + = e bele ) Vi +
(13)

0 0 .

Efe(m”e:() + abekzo)vp]*

0
2Eo[(=
el(z,
Similar to the above proof, it is easy to verify that

0
2Ep|(
£(@)leco + ZLbeco)V]

€ e=0 86 ele=0 e |-
0 0
EP[(mfe(X)|e=O + S be leeo) V] =
0 0
(k + 1)EP[(%JC€(X)|€=O + mbek:o)‘/}g]—
0 0
(k + 1)EQ(%JC€(X)|€=O + mbe'e:O)VIg.
Thus, we have
0 0
L {erk:o’ Wbe|e=0:|

= (k+ 1) [Ep(BIFK(Q; (frx), P)VE(®(x))

— Eq(BIFy(Q; (fax), P)VE)®(z),
+ Ep(BIFL(Q; (frx), P))Vp
—EQ(B]Fk(Q; (f)\’K)7P)VI/3/) .
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