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Abstract

Model selection is one of the key issues both in
recent research and application of kernel meth-
ods. Cross-validation is a commonly employed
and widely accepted model selection criterion.
However, it requires multiple times of train-
ing the algorithm under consideration, which is
computationally intensive. In this paper, we
present a novel strategy for approximating the
cross-validation based on the Bouligand influ-
ence function (BIF), which only requires the so-
lution of the algorithm once. The BIF measures
the impact of an infinitesimal small amount of
contamination of the original distribution. We
first establish the link between the concept of BIF
and the concept of cross-validation. The BIF is
related to the first order term of a Taylor expan-
sion. Then, we calculate the BIF and higher or-
der BIFs, and apply these theoretical results to
approximate the cross-validation error in prac-
tice. Experimental results demonstrate that our
approximate cross-validation criterion is sound
and efficient.

1. Introduction

Kernel methods, such as SVM (Steinwart & Christmann,
2008; Vapnik, 2000), least squares support vector machine
(LSSVM) (Suykens & Vandewalle, 1999) and support vec-
tor regression (SVR) (Shawe-Taylor & Cristianini, 2000),
have been widely used in data mining and machine learn-
ing. The performance of these kernel methods greatly de-
pends on the choice of some hyper-parameters (such as the
kernel parameter and regularization parameter), therefore
the model selection problem becomes an important topic
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in kernel methods. A related problem is the evaluation of
the generalization ability of the learning algorithms. In fac-
t, it is common to select the optimal hyper-parameters by
choosing the ones with the lowest generalization error.

Obviously, the generalization error is not directly com-
putable, as the probability distribution generating the data
is unknown, therefore it is necessary to resort to estimates
of its value. This error can be estimated either via testing
on some data which has not been used for learning (hold-
out testing or cross-validation techniques) or via a bound
given by theoretical analysis (Chapelle et al., 2002). To es-
tablish the upper bounds of the generalization error, some
measures are introduced: such as VC dimension (Vapnik,
2000), Rademacher complexity (Bartlett & Mendelson,
2002), maximal discrepancy (Bartlett et al., 2002), regular-
ized risk (Schölkopf & Smola, 2002), radius-margin bound
(Vapnik, 2000), compression coefficient (Luxburg et al.,
2004) and eigenvalues perturbation (Liu et al., 2013).

While there have been many interesting attempts to use
the above bounds or other techniques to pick the hyper-
parameters, the most commonly used and widely accept-
ed methods for selecting the hyper-parameters are still
thek-fold cross-validation (KCV) and leave-one-out cross-
validation (LOO). However, KCV and LOO requires the
solution of the algorithm under consideration several times,
which are computationally expensive. For the sake of ef-
ficiency, some approximate LOO criteria for some spe-
cific algorithms are given: such as generalized cross-
validation (GCV)(Golub et al., 1979), influence function
(Debruyne et al., 2008), generalized approximate cross-
validation (GACV) (Wahba et al., 1999) and span bound
(Chapelle et al., 2002).

In this paper, we will present a novel strategy for approxi-
mating thek-fold cross-validation based on the Bouligand
influence function (BIF) (Christmann & Messem, 2008).
To our knowledge, an effective strategy for approximat-
ing thek-fold cross-validation error (for allk) for kernel
methods has never been given before. We establish the link
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between the concept of BIF and the concept of KCV, and
present a novel method to calculate the BIF and higher or-
der BIFs at the continuous distribution. Furthermore, we
evaluate these BIFs at the sample distribution and use these
BIFs to obtain an approximation of KCV. Our method re-
quires the solution of the algorithm only once, which can
dramatically improve the efficiency. Experimental result-
s demonstrate that our BIF criterion is a good choice for
model selection.

Related Work

In recent years, some researcher study the robustness of the
kernel methods. In the field of robust statistics the influ-
ence function (Hampel et al., 1986) is introduced in order
to analyze the effects of outliers on the algorithm. This
influence function is defined for continuous distribution-
s that are slightly perturbed by adding a small amount of
probability mass at a certain place. Christmann and Stein-
wart (Christmann & Steinwart, 2004; 2007), Steinwart and
Christmann (Steinwart & Christmann, 2008), Christmann
et al (Christmann et al., 2009), and Messem and Christ-
mann (Messem & Christmann, 2010) show that SVMs for
classification and regression have a bounded influence
function under some assumption of the loss function. De-
bruyne et al (Debruyne et al., 2008) presented a method to
estimate the LOO via the influence function. Christmann
and Messem (Christmann & Messem, 2008) generalize the
notion of influence function, and introduce a new notion
from Bouligand-derivatives (Robinson, 1991) called Bouli-
gand influence function (BIF), which measures the impact
of an infinitesimal small amount of contamination of the o-
riginal distribution. They show that SVMs have a bounded
BIF with some weaker assumptions of loss function.

For kernel methods, such as SVM, LSSVM and SVR, the
form of the decision function isf(x) =

∑

i αiK(x,xi) +
b. The above work about the robust statistics of kernel
methods all ignore the biasb. However, sometimes the
biasb plays an important role in the performance of kernel
methods. In this paper, we consider theb, and present a the-
oretical result to calculate the BIF at the continuous distri-
bution. This result generalizes the result of Christmann and
Messem (Christmann & Messem, 2008) with a much sim-
pler proof. Debruyne et al (Debruyne et al., 2008) present
a method to calculate the higher order IFs, and apply these
results to approximate the LOO. We generalize the results
of IFs to BIFs, and apply these results of BIFs to approxi-
mate the cross-validation error in practice.

The rest of the paper is organized as follows. In Section
2, we introduce some elementary facts. In Section 3, we
introduce the concept of BIF, and give a novel strategy for
approximating the cross-validation error. A method to cal-
culate the BIF and higher order BIFs is proposed in Section

4. In Section 5, we show how to use these BIFs to approxi-
mate the cross-validation estimator in practice. We empiri-
cally analyze the performance of our proposed approximate
cross-validation criterion in Section 6. We end in Section 7
with conclusion.

2. Preliminaries

Given a sample setS = {(xi, yi)}
n
i=1 of sizen drawn iden-

tically and independently from a fixed, but unknown prob-
ability measureP on Z = X × Y, X ⊆ R

d, Y ⊆ R for
regression, andY ⊆ {+1,−1} for classification.

Let K : X × X → R be a kernel, that is,K is symmetric
and for any finite set of points{x1, . . . ,xn} ⊂ X , the ker-
nel matrixK = [K(xi,xj)]

m

i,j=1 is positive semidefinite.
The reproducing kernel Hilbert space (RKHS)H associ-
ated with the kernelK is defined to be the completion of
the linear span of the set of functions{Φ(x) = K(x, ·) :
x ∈ X} with the inner product denoted as〈·, ·〉K satisfying
〈Φ(x),Φ(x′)〉K = K(x,x′) (Aronszajn, 1950).

The operatorfλ,K+bλ,K : P → fλ,K,P+bλ,K,P is defined
by

fλ,K,P + bλ,K,P = argmin
f∈H,b∈R

EPV (y − f(x)− b) + λ‖f‖2K ,

whereV (·) is a loss function andλ is the regularization
parameter. When the sample distributionPn is used, one
has thatfλ,K,Pn

+ bλ,K,Pn
=

argmin
f∈H,b∈R

1

n

n
∑

i=1

V (yi − f(xi)− b) + λ‖f‖2K .

Such estimators have been studied in detail, see for exam-
ple (Wahba, 1990; Vapnik, 2000).

LSSVM (Suykens & Vandewalle, 1999; Cawley & Talbot,
2007), ǫ-insensitive support vector regression (ǫ-SVR)
(Shawe-Taylor & Cristianini, 2000) and quadratic ǫ-
insensitive support vector regression (quadraticǫ-SVR)
(Shawe-Taylor & Cristianini, 2000) are only different in
the choice of the loss function. For LSSVM,V (r) = r2,
for ǫ-SVR,V (r) = max{|r| − ǫ, 0}, and for quadraticǫ-
SVR,V (r) = (max{|r| − ǫ, 0})2.

Unless specially stated, we respectively writefλ,K,P and
bλ,K,P asfP andbP in the following.

3. A Strategy for Fast Approximation of
Cross Validation

In this section, we introduce the Bouligand influence func-
tion (BIF) (Christmann & Messem, 2008) and Higher order
BIFs, and show how to use these BIFs to approximate the
k-fold cross-validation (KCV).
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3.1. Bouligand Influence Function

Definition 1. LetP be a distribution andT be a functional
T : P → T (P ). Then theBouligand influence function
(BIF) of T atP in the direction of a distributionQ 6= P is
defined as

BIF (Q;T, P ) = lim
ǫ→0

T ((1− ǫ)P + ǫQ)− T (P )

ǫ
.

The BIF measures the impact of an infinitesimal smal-
l amount of contamination of the original distributionP
in the direction ofQ on the quantity ofT (P ).

DenotePǫ,Q = (1 − ǫ)P + ǫQ. One can see that the BIF
is a first order derivative ofT (Pǫ,Q) at ǫ = 0. Higher order
BIFs can be defined too:

Definition 2. LetP be a distribution andT be a functional
T : P → T (P ). Then thekth order BIF ofT at P in the
direction of a distributionQ is defined as

BIFk(Q;T, P ) =
∂

∂kǫ
T (Pǫ,Q)|ǫ=0.

If all BIFs exist then the following Taylor expansion holds:

T (Pǫ,Q) = T (P ) +

∞
∑

i=1

ǫi

i!
BIFi(Q;T, P ). (1)

3.2. A Strategy for Approximating the KCV using BIF

Assume the sample setS = {(xi, yi)}
n
i=1 is divided into

k disjoint parts{Si}
k
i=1. LetP−Si

n be the empirical distri-
bution of the sampleS without the observationsSi, that is
P−Si
n (x) = 1

n−M
if x ∈ S \ Si, otherwise 0, whereM is

the size ofSi.

For k-fold cross-validation, theT (P−Si
n ) should be com-

puted for everyi. This means that the algorithm under
consideration has to be executedk times, which is com-
putationally intensive.

If the BIFs ofT can be calculated, we can provide a fast
alternative. First note that

P−Si
n =

(

1−

(

−M

n−M

))

Pn +
−M

n−M
∆Si

,

where∆Si
is the sample distribution corresponding to the

sampleSi, that is,∆Si
(x) = 1

M
if x ∈ Si, otherwise

0. Thus, takingQ = ∆Si
, ǫ = − M

n−M
, Pǫ,Q = P−Si

n ,
P = Pn andT = fλ,K + bλ,K , Equation (1) gives

f
P

−Si
n

+ b
P

−Si
n

= fPn
+ bPn

+

∞
∑

j=1

(

−M

n−M

)j
BIFj(∆Si

; fλ,K + bλ,K , Pn)

j!
.

(2)

The right hand side now only depends on the full sample
Pn and∆Si

. Given theBIFj(∆Si
; fλ,K + bλ,K , Pn), the

k-fold cross validation can be written as

k-CV =
1

n

k
∑

i=1

∑

xj∈Si

ℓ
(

yj , fPn
+ bPn

+

∞
∑

j=1

(

−M

n−M

)j
BIFj(∆Si

; fλ,K + bλ,K , Pn)

j!

)

,

whereℓ(·, ·) is an appropriate loss function. It only requires
the solution of the algorithm once.

Note that−M/(n − M) = −1/(k − 1), the
∣

∣

∣

(−1)j

(k−1)jj!

∣

∣

∣
is

very small for some largej. Thus, we can take the low
order approximation of the Taylor expansion to effectively
approximate thek-fold cross-validation:

k-CV ≈
1

n

k
∑

i=1

∑

xj∈Si

ℓ
(

yj , fPn
+ bPn

+

r
∑

p=1

(

−M

n−M

)p
BIFp(∆Si

; fλ,K + bλ,K , Pn)

p!

)

.

Remark 1. In our experiments, when the order of Taylor
expansionr ≥ 3, we find that the value of the approximate
cross-validation error is almost the same as original one.

4. The Calculation of BIFs

In this section, we first provide a novel method to calculate
the BIF and higher order BIFs at the continuous distribu-
tion P , and then estimate these BIFs at the specific sample
distributionPn.

4.1. The Calculation of BIFs at Continuous
Distribution

By the definition of thek-th order BIF offλ,K + bλ,K ,
k = 1, 2, . . ., it is easy to verify that

BIFk(Q; fλ,K + bλ,K , P ) =
∂

∂kǫ
fPǫ,Q

|ǫ=0 +
∂

∂kǫ
bPǫ,Q

|ǫ=0.

Let VP = V (y − fP (x) − bP )), the first order BIF at the
P will be given in the following theorem.

Theorem 1. Let H be a RKHS of a bounded continuous
kernelK on X . Furthermore, letP be a distribution on
X × Y, then the BIF offλ,K + bλ,K in the direction of a
distributionQ 6= P is

[
∂

∂ǫ
fPǫ,Q

|ǫ=0,
∂

∂ǫ
bPǫ,Q

|ǫ=0] =

L−1[−2λfP + EQ(V
′
PΦ(x)),EQV

′
P ],
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where the operatorL : (H,R) → (H,R) is defined by

L(f, b) =
[

2λf + EP (V
′′
P f(x)Φ(x)) + bEP (V

′′
P Φ(x)),

EP (V
′′
P f(x)) + bEP (V

′′
P )

]

.

The proof is given in Appendix A.

Remark 2. The first order BIF of the decision function
without the bias term (bλ,K = 0) has been given in
(Christmann & Messem, 2008). Our above theorem gen-
eralizes their result. Moreover, our proof is much simpler.

The higher order BIF is given in the following theorem:

Theorem 2. LetH be an RKHS of a bounded continuous
kernelK onX . LetV be a convex loss function such that
the third derivative is0. Furthermore, letP be a distribu-
tion onX × Y, then the(k + 1) order BIF offλ,K + bλ,K
in the direction of a distributionQ 6= P is
[

∂

∂k+1ǫ
fPǫ,Q

|ǫ=0,
∂

∂k+1ǫ
bPǫ,Q

|ǫ=0

]

=

(k + 1)L−1
[

2EP (BIFk(Q; fλ,K + bλ,K , P )V ′′
P (Φ(x)))−

EQ(BIFk(Q; fλ,K + bλ,K , P )V ′′
P Φ(x)),

EP (BIFk(Q; fλ,K + bλ,K , P )V ′′
P )−

EQ(BIFk(Q; fλ,K + bλ,K , P )V ′′
P )

]

.

where the operatorL : (H,R) → (H,R) is defined by

L(f, b) =
[

2λf + EP (V
′′
P f(x)Φ(x)) + bEP (V

′′
P Φ(x)),

EP (V
′′
P f(x)) + bEP (V

′′
P )

]

.

The proof is given in Appendix B.

Remark 3. For the common loss functionV , such as
V (r) = r2 andV (r) = (max(|r|− ǫ, 0)2, the third deriva-
tive is 0. Thus, the assumption of the above Theorem is
feasible.

4.2. The Calculation of BIFs at the Sample Distribution

In this subsection, we will estimate the BIF at the sample
distributionPn to obtainBIFj(∆Si

; fλ,K + bλ,K , Pn).

4.2.1. LSSVM

First consider taking the least squares lossV (r) = r2.
From Theorem1, the operatorL at Pn maps any(f, b) ∈
(H,R) to

L(f, b) =
[

2λf +
2

n

n
∑

j=1

f(xj)Φ(xj) +
2b

n

n
∑

j=1

Φ(xj),

2

n

n
∑

j=1

f(xj) + 2b
]

.

Denotef = (f(x1), . . . , f(xn))
T, 1 = (1, . . . , 1)T, ker-

nel matrixK = [K(xi,xj)]
n
i,j=1. Note that







L(f, b)(x1)
...

L(f, b)(xn)






= 2

[

λIn + 1
n
K 1

n
K1

1
n
1
T 1

] [

f

b

]

,

which means that the matrix

2Ln := 2

[

λIn + 1
n
K 1

n
K1

1
n
1
T 1

]

is the finite sample version of the operatorL atPn. Denote

∂

∂kǫ
fPǫ,∆Si

|ǫ=0

= (
∂

∂kǫ
fPǫ,∆Si

(x1)|ǫ=0, . . . ,
∂

∂kǫ
fPǫ,∆Si

(xn)|ǫ=0)
T.

From Theorem1, it is now clear that
[

∂
∂ǫ
fPǫ,∆Si

|ǫ=0

∂
∂ǫ
bPǫ,∆Si

|ǫ=0

]

= L−1
n

[

1
M
[K • Si]g − λfPn

1
M
gT
Si
1

]

whereg = (g1, . . . , gn)
T, gi = yi− fPn

(xi)− bPn
, gSi

=
(gSi,1, . . . , gSi,n)

T, gSi,j = gj if xj ∈ Si, otherwise0,
fPn

= (fPn
(x1), . . . , fPn

(xn))
T, Si denote then × n

matrix as[Si]j,k = 1 if xk ∈ Si, otherwise 0, and• is
the entrywise matrix product (also known as the Hadamard
product).

From Theorem2, one sees similarly that the higher order
terms can be computed

[

∂
∂k+1ǫ

fPǫ,∆Si
|ǫ=0

∂
∂k+1ǫ

bPǫ,∆Si
|ǫ=0

]

=

(k + 1)L−1
n

[

1
n
Kbk −

1
M
K • Sibk

1
n
1
Tbk −

1
M
1
Tbk,Si

]

,

where

bk =
(

BIFk(∆Si
; fλ,K + bλ,K , Pn)(x1)), . . . ,

BIFk(∆Si
; fλ,K + bλ,K , Pn)(xn)

)T

,

BIFk(∆Si
; fλ,K + bλ,K , Pn)(xj) =

∂

∂kǫ
fǫ,∆Si

(xj)|ǫ=0 +
∂

∂kǫ
bǫ,∆Si

(xj)|ǫ=0,

bk,Si
= (bk,Si,1, . . . , bk,Si,n)

T, bk,Si,j = bk,j if xj ∈ Si,
otherwise 0.

For thek-fold cross-validation, define[BIFMLSSVMt]
thek × n matrix with

[BIFMLSSVMt]i,j = BIFt(∆Si
; fλ,K + bλ,K , Pn)(xj).
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According to Equation (2), by cutting it off at some stepr,
we have

f
P

−Si
n

(xj) + b
P

−Si
n

≈ fPn
(xj) + bPn

+

r
∑

s=1

(

−1

k − 1

)s
1

s!
[BIFMLSSVMs]i,j .

(3)

4.2.2. QUADRATIC ǫ-SVR

For the quadraticǫ-insensitive loss we have that

V (r) =

{

0, if |r| ≤ ǫ

(r − ǫ)2, if |r| > ǫ

and thusV ′(r) =

{

0, if |r| < ǫ

2(r − ǫ), if |r| > ǫ
, V ′′(r) =

{

0, if |r| < ǫ

2, if |r| > ǫ.
Note that the derivatives inr = ǫ do not

exist, but in practice the probability thatr = ǫ is 0, so we
can ignore this possibility.

Similar with the least squares loss, it is easy to verify that

Ln :=

[

2λIn + 1
n
[K •B] [K •B]1

1
n
vT vT

1

]

is the finite sample version of the operatorL at sam-
ple Pn, whereB denote the matrix containingV ′′(yi −
fPn

(xi) − bPn
) at every entry in thei-th column, and

v = (v1, . . . , vn)
T, vi = V ′′(yi − fPn

(xi)− bPn
).

From Theorem1, we have
[

∂
∂ǫ
fPǫ,∆Si

|ǫ=0

∂
∂ǫ
bPǫ,∆Si

|ǫ=0

]

= L−1
n

[

1
M
K • Siu− λfPn

1
M
uT
Si
1

]

where u = (u1, . . . , un), ui = V ′(yi − fPn
(xi) −

bPn
), uSi

= (uSi,1, . . . , uSi,n), uSi,j = uj if xj ∈
Si otherwise0. By Theorem2, the higher order terms can
be computed,

[

∂
∂k+1ǫ

fPǫ,∆Si
|ǫ=0

∂
∂k+1ǫ

bPǫ,∆Si
|ǫ=0

]

=

(k + 1)S−1
n

[

1
n
[K •B]bk −

1
M
K •B • Sibk

1
n
vTbk − 1

M
vT
Si
bk

]

.

wherev = (v1, . . . , vn)
T, vi = V ′′(yi − fPn

(xi) − bPn
),

vSi,j = vj if x ∈ Si, otherwise0.

For thek-fold cross-validation, let[BIFMSV Rt] be the
k × n matrix with

[BIFMSV Rt]i,j = BIFt(∆Si
; fλ,K + bλ,K , Pn)(xj).

From Equation (2), we have

f
P

−Si
n

(xj) + b
P

−Si
n

≈ fPn
(xj) + bPn

+

r
∑

s=1

(

−1

k − 1

)s
1

s!
[BIFMSV Rs]i,j .

(4)

5. Approximate KCV Criteria

The traditionalk-fold cross-validation error is given by

kCV =
1

n

k
∑

i=1

∑

xj∈Si

ℓ(yj, fP−Si
n

(xj) + b
P

−Si
n

),

whereℓ(·, ·) is an appropriate loss function. The idea we in-
vestigate is to replace the explicitk-fold cross-validation by
the approximation in (3) for LSSVM and (4) for quadratic
ǫ-SVR.

The t-th order BIF criterion of the approximatek-fold
cross-validation error for LSSVM is defined as

BIF t
k =

1

n

k
∑

i=1

∑

xj∈Si

ℓ
(

yj, fλ,K,Pn
(xj) + bλ,K,Pn

+

t
∑

s=1

(

−1

k − 1

)s
1

s!
[BIFMLSSVMs]i,j

)

.

For quadraticǫ-SVR:

ǫ-BIF t
k =

1

n

k
∑

i=1

∑

xj∈Si

ℓ
(

yj , fλ,K,Pn
(xj) + bλ,K,Pn

+

t
∑

s=1

(

−1

k − 1

)s
1

s!
[BIFMSV Rs]i,j

)

.

5.1. Time Complexity Analysis

To computeBIF t
k andǫ-BIF t

k, we needO(n3) to calcu-
late the inversion ofLn

1, andO(kn2 + tn2) to calculate
the BIF matrices, wheren is size of the training set,k is
the fold of cross-validation andt is the order of the Taylor
expansion. Thus, the overall time complexity ofBIF t

k and
ǫ-BIF t

k are bothO(n3 + kn2 + tn2).

For the traditionalk-fold cross-validation method, the al-
gorithm under consideration need to be executedk times,
thus for LSSVM and quadraticǫ-SVR the time complexity
are bothO(kn3).

6. Experiments

In this section, we will empirically analyze the perfor-
mance of our proposed approximatek-fold cross-validation
criterion (BIF-kCV).

1If Ln is not invertible, we can use the pseudo-inverse ofLn.
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Table 1.The average testing errors (%) on the classification data sets and the testing mean square error (MSE) on regression
data sets, the order of Taylor expansiont = 3.
Classification EP ELOO 5CV BIF-5CV 10CV BIF-10CV 20CV BIF-20CV

ionosphere 14.74± 3.97 6.65± 1.47 7.16± 1.54 8.18± 1.54 7.16± 2.07 7.61± 1.69 8.18± 1.54 8.07± 1.68
breast 3.58± 0.38 3.07± 0.59 3.45± 0.81 3.45± 0.81 3.45± 0.81 3.45± 0.81 3.45± 0.81 3.45± 0.81
diabetes 24.22± 1.67 23.83± 1.69 22.24± 2.47 22.24± 2.47 22.66± 2.23 22.66± 2.23 22.50± 2.18 22.50± 2.18
fourclass 22.87± 0.98 19.49± 2.03 18.19± 3.32 18.19± 3.32 18.19± 3.32 18.19± 3.32 17.12± 2.28 17.12± 2.28
australian 13.51± 1.38 14.29± 1.81 15.19± 2.18 15.19± 2.18 14.09± 1.96 14.09± 1.96 14.49± 2.35 14.49± 2.35
heart 18.96± 3.08 19.70± 4.19 16.56± 3.35 17.41± 1.69 16.15± 3.33 17.85± 2.25 16.15± 2.98 17.59± 3.07
german 25.84± 2.84 26.38± 2.31 25.52± 1.45 25.52± 1.45 25.28± 1.38 25.28± 1.38 25.28± 1.38 25.28± 1.38
liver 39.42± 4.06 31.39± 3.71 29.71± 1.86 29.71± 1.86 29.25± 2.73 31.21± 1.29 31.10± 3.43 31.10± 3.43
sonar 17.12± 2.39 16.15± 3.65 16.92± 4.49 17.88± 2.08 17.12± 4.58 18.62± 2.45 16.92± 4.69 17.32± 2.45
a2a 20.38± 1.68 18.90± 1.01 18.98± 0.95 18.98± 0.95 19.10± 0.96 19.10± 0.96 19.10± 1.05 19.10± 1.05

Regression EP ELOO 5CV BIF-5CV 10CV BIF-10CV 20CV BIF-20CV

bodyfat 5.1e-5± 3.1e-5 3.9e-5± 9.9e-6 4.5e-5± 1.4e-5 4.5e-5± 1.4e-5 4.5e-5± 1.4e-5 4.5e-5± 1.4e-5 4.5e-5± 1.4e-5 4.5e-5± 1.4e-5
housing 31.3± 6.4 24.3± 3.4 23.9± 3.8 23.9± 3.8 23.98± 3.8 23.9± 3.8 23.9± 3.8 23.9± 3.8
mpg 12.4± 2.2 9.6± 1.5 8.7± 0.8 8.7± 0.8 8.7± 0.8 8.6± 0.8 8.6± 0.8 8.6± 0.8
pyrim 1.2e-2± 4.0e-3 1.4e-2± 4.2e-3 1.0e-2± 2.9e-3 1.1e-2± 2.4e-3 1.0e-2± 2.9e-3 1.1e-2± 2.4e-3 1.0e-2± 2.9e-3 1.1e-2± 2.1e-3
triazines 2.0e-2± 2.9e-3 2.2e-2± 3.3e-3 2.3e-2± 3.6e-3 2.3e-2± 4.4e-3 2.2e-2± 3.2e-3 2.2e-2± 3.7e-3 2.3e-2± 3.1e-3 2.3e-2± 4.4e-3
eunite 700.4± 118.4 625.8± 62.1 593.1± 95.0 592.5± 95.0 596.9± 95.8 594.6± 96.3 596.9± 95.8 594.6± 96.2
space-ga 2.7e-2± 3.9e-3 1.9e-2± 2.0e-3 1.9e-2± 2.0e-3 1.9e-2± 2.0e-3 1.9e-2± 2.0e-3 1.9e-2± 2.0e-3 1.9e-2± 2.0e-3 1.9e-2± 2.0e-3
cpusmall 42.0± 13.1 44.5± 4.4 42.9± 5.9 42.9± 5.9 42.9± 5.9 42.91± 5.9 42.9± 5.9 42.9± 5.9
mg 1.6e-2± 3.3e-4 1.5e-2± 7.6e-4 1.5e-2± 9.7e-4 1.5e-2± 9.7e-4 1.5e-2± 9.7e-4 1.5e-2± 9.7e-4 1.5e-2± 9.7e-4 1.5e-2± 9.7e-4
abalone 6.4± 0.5 5.7± 0.5 5.5± 0.3 5.5± 0.3 5.5± 0.3 5.5± 0.3 5.5± 0.3 5.5± 0.3
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Figure 1.The mean square discrepancies between 5CV and BIF-5CV, 10CVand BIF-10CV, 20CV and BIF-20CV with differentk, k is
the order of Taylor expansion.

The evaluation is made on 20 publicly available data sets
from LIBSVM Data: 10 data sets for classification and 10
data sets for regression seen in Table1. Experiments are
performed on a Dell Vestro PC with 3.4-GHz 8-core CPU
and 8-GB memory.

We useK(x,x′) = exp(−‖x−x′‖22/2τ) as our candidate
kernels,τ ∈ {2i, i = −6,−5, . . . , 7, 8}. The regulariza-
tion parameterλ ∈ {2i, i = −7,−6, . . . , 2}. The learning
algorithm considered in our experiments is LSSVM. For
each data set, we have run all the methods 10 times with
training and testing data sets be split randomly (50% of all
the examples for training and the other 50% for testing).

6.1. Accuracy

We will compare our proposed BIF-kCV with the
traditional k-fold cross-validation (kCV), the efficien-
t leave-one-out cross-validation (ELOO) (Cawley, 2006;

Cawley & Talbot, 2007) and the latest proposed eigenval-
ues perturbation criterion (EP) (Liu et al., 2013).

In our first experiment, we set the order of Taylor expan-
sion t = 3 (we will explore the effect of this parameter in
the second experiment). The average testing errors for clas-
sification and testing mean square error for regression are
reported in Table1. The elements in Table1 are obtained as
follows. For each training set, we choose the kernel param-
eterτ and regularization parameterλ by each criterion on
the training set, and evaluate the testing error for the chosen
parameters on the testing set.

The results in Table1can be summarized as follows: (a) On
most data sets, BIF-kCV gives almost the same testing er-
rors as the traditionalkCV, k = 5, 10, 20. In particular, on
breast, diabetes, australian, fourclass, german, a2a, body-
fat, housing, eunite, space-ga, mg and abalone, BIF-kCV
gives the same testing errors askCV. On the remaining data
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Table 2.The average computational time (second), the order of Taylor expansiont = 3
Classification EP ELOO 5CV BIF-5CV 10CV BIF-10CV 20CV BIF-20CV

ionosphere 0.91± 0.01 0.43± 0.02 0.87± 0.02 0.47± 0.01 2.02± 0.03 0.66± 0.01 4.60± 0.03 1.02± 0.01
breast 2.99± 0.05 1.42± 0.11 2.88± 0.06 1.70± 0.04 6.83± 0.15 2.20± 0.05 14.03± 0.23 3.21± 0.08
diabetes 3.57± 0.04 2.10± 0.09 3.30± 0.04 2.57± 0.03 8.17± 0.21 3.46± 0.03 21.63± 0.11 5.15± 0.04
fourclass 4.23± 0.02 2.50± 0.08 4.40± 0.17 3.31± 0.09 11.64± 0.25 4.39± 0.18 26.05± 0.48 6.52± 0.27
australian 2.82± 0.17 1.45± 0.23 2.70± 0.09 1.71± 0.03 6.81± 0.04 2.19± 0.01 13.76± 0.04 3.17± 0.08
heart 0.58± 0.01 0.30± 0.01 0.58± 0.01 0.32± 0.02 1.31± 0.02 0.45± 0.01 2.79± 0.03 0.73± 0.02
german 7.02± 0.06 3.85± 0.13 6.78± 0.12 4.65± 0.10 16.89± 0.18 6.10± 0.11 38.88± 0.34 8.99± 0.07
liver 1.04± 0.04 0.42± 0.02 0.81± 0.01 0.46± 0.01 1.96± 0.02 0.62± 0.02 4.02± 0.08 0.97± 0.02
sonar 0.54± 0.01 0.25± 0.01 0.48± 0.01 0.23± 0.00 1.05± 0.02 0.36± 0.02 2.24± 0.03 0.57± 0.01
a2a 58.44± 0.21 31.87± 0.20 52.66± 0.15 37.50± 0.39 142.92± 0.70 46.57± 0.27 308.06± 0.96 64.85± 0.38

Regression EP ELOO 5CV BIF-5CV 10CV BIF-10CV 20CV BIF-20CV

bodyfat 0.76± 0.01 0.30± 0.04 0.59± 0.03 0.32± 0.02 1.28± 0.06 0.45± 0.02 2.61± 0.16 0.72± 0.04
housing 1.78± 0.01 0.86± 0.03 1.60± 0.04 0.91± 0.02 3.63± 0.12 1.22± 0.02 8.38± 0.20 1.85± 0.01
mpg 1.01± 0.02 0.52± 0.04 0.99± 0.01 0.57± 0.01 2.31± 0.00 0.77± 0.01 4.94± 0.02 1.19± 0.01
pyrim 0.23± 0.01 0.09± 0.01 0.20± 0.01 0.09± 0.01 0.40± 0.01 0.15± 0.01 0.78± 0.01 0.24± 0.01
triazines 0.39± 0.03 0.22± 0.01 0.46± 0.01 0.21± 0.00 0.94± 0.02 0.30± 0.00 2.00± 0.03 0.50± 0.01
eunite 0.17± 0.07 0.42± 0.03 0.83± 0.07 0.43± 0.02 1.75± 0.08 0.61± 0.02 3.83± 0.20 0.94± 0.04
space-ga 97.77± 0.15 64.89± 6.29 93.65± 0.45 69.84± 0.62 252.3± 0.77 85.49± 0.28 600.1± 0.42 117.8± 0.2
cpusmall 73.65± 0.03 41.69± 0.25 68.49± 2.48 48.38± 1.28 172.2± 5.66 60.21± 0.82 395.8± 11.9 85.01± 1.33
mg 16.25± 0.05 8.49± 0.17 13.36± 0.47 8.99± 0.07 37.17± 0.46 13.00± 0.04 81.72± 0.73 19.15± 0.02
abalone 275.5± 3.52 152.8± 3.45 253.2± 2.66 168.7± 1.92 730.4± 3.62 196.7± 1.56 1760.9± 8.05 255.1± 3.41

sets, both BIF-kCV andkCV give the similar results. Thus,
it implicate that the quality of our approximation based on
the Bouligand influence function is quite good. (b) BIF-
kCV gives much better results than EP on most data sets.
In particular, BIF-CV outperforms EP on 16 out of 20 da-
ta sets, and also give results close to results of EP on the
remaining 4 sets. (c) For classification, BIF-k and ELOO
give comparable results. However, for regression, BIF-k
outperforms ELOO on 8 out of 10 data sets.

In the second experiment, we will explore the effect of the
parametert (the order of Taylor expansion). The discrepan-
cies betweenkCV and BIF-kCV with differentk are given
in Figure1 (due to space limit, we randomly select 5 clas-
sification data sets and 5 regression data sets).

The plots in this figure are obtained as follows. For each
training set, we choose theτ andλ by cross validation on
the training set. Plotted are the mean square error of the
approximatef

P
−Si
n

(x) againstf
P

−Si
n

(x) for the chosen pa-
rameters on the validation sampleSi,x ∈ Si, i = 1, . . . , k.
We can find that, on most data sets, the discrepancies be-
tweenkCV and BIF-kCV is equal 0 whent ≥ 3. Thus, we
can selectt = 3 in practice without sacrificing accuracy.

6.2. Efficiency

The running time are reported in Table2. The results in
Table2 can be summarized as follows: (a) The time cost of
BIF-kCV is much lower than that ofkCV. Thus, BIF-kCV
significantly improves the efficiency ofkCV for model s-
election. (b) BIF-5CV and BIF-10CV are faster than EP,
BIF-20CV and EP are comparable in computing time. (c)
BIF-5CV and ELOO give the similar results.

7. Conclusion

We propose a novel strategy for approximating thek-fold
cross-validation error based on the Bouligand influence
function (BIF), which can be computed efficiently. Link
between the concept of BIF and concept of cross-validation
is considered. The calculation of the higher order BIFs
and a recursive relation between subsequent terms are pro-
posed. It is shown that these theoretical results can be ap-
plied in practice to approximate the cross-validation error.
Experiments indicate that our proposed criterion based on
BIF is a good choice for model selection.

Future work will extend our method to other kernel based
methods, such as kernel-based logistic regression and
SVM.
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Appendix A: Proof of Theorem 1

Proof. From Theorem 2 in (Vito et al., 2004), we have

2λfP = EP [V
′
PΦ(x)], 0 = EPV

′
P . (5)

Let fǫ = fPǫ,Q
andbǫ = bPǫ,Q

. Note thatPǫ,Q = (1 −
ǫ)P + ǫQ, thus we can obtain that

2λfǫ = (1− ǫ)EP [V
′
ǫΦ(x)] + ǫEQ[V

′
ǫΦ(x)] (6)

0 = (1− ǫ)EPV
′
ǫ + ǫEQV

′
ǫ , (7)

whereVǫ = V (y − fǫ(x)− bǫ).
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Taking the first derivative on both sides of (6) with respect
to ǫ yields

2λ
∂

∂ǫ
fǫ =

(1 − ǫ)EP [−(
∂

∂ǫ
fǫ(x) +

∂

∂ǫ
bǫ)V

′′
ǫ Φ(x)]− EP (V

′
ǫΦ(x))

+ ǫEQ[−(
∂

∂ǫ
fǫ(x) +

∂

∂ǫ
bǫ)V

′′
ǫ Φ(x)] + EQ(V

′
ǫΦ(x)).

(8)

Setǫ = 0 and according to (5), we have

2λ
∂

∂ǫ
fǫ|ǫ=0 + EP [(

∂

∂ǫ
fǫ(x)|ǫ=0 +

∂

∂ǫ
bǫ|ǫ=0)V

′′
P Φ(x)]

= −2λfP + EQ(V
′
PΦ(x)).

(9)

Taking the first derivative on both sides of (7) with respect
to ǫ yields

0 = (1− ǫ)EP [(−
∂

∂ǫ
fǫ(x)−

∂

∂ǫ
bǫ)V

′′
ǫ ]− EPV

′
ǫ

+ ǫEQ[(−
∂

∂ǫ
fǫ(x)−

∂

∂ǫ
bǫ)V

′′
ǫ ] + EQV

′
ǫ .

(10)

Setǫ = 0 and according to (5),

EP [(
∂

∂ǫ
fǫ(x)|ǫ=0 +

∂

∂ǫ
bǫ|ǫ=0)V

′′
P ] = EQV

′
P . (11)

By the definition of the operatorL, the system
of linear equations, (9) and (11), can be writ-

ten as L
[

∂
∂ǫ
fǫ|ǫ=0,

∂
∂ǫ
bǫ|ǫ=0

]

=
[

− 2λfP +

EQ(V
′
PΦ(x)),EQ(V

′
P )

]

.

Appendix B: Proof of the Theorem2

Proof. First we proof the following for all2 ≤ k ∈ N:

2λ
∂

∂kǫ
fǫ =(1− ǫ)EP [−(

∂

∂kǫ
fǫ(x) +

∂

∂kǫ
bǫ)V

′′
ǫ Φ(x)]+

kEP [(
∂

∂k−1ǫ
fǫ(x) +

∂

∂k−1ǫ
bǫ)V

′′
ǫ Φ(x)]−

kEQ[(
∂

∂k−1ǫ
fǫ(x) +

∂

∂k−1ǫ
bǫ)V

′′
ǫ Φ(x)]−

ǫEQ[(
∂

∂kǫ
fǫ(x) +

∂

∂kǫ
bǫ)V

′′
ǫ Φ(x)].

(12)

Taking the derivative on both sides of (8) with respec-
t to ǫ yields 2λ ∂

∂2ǫ
fǫ = (1 − ǫ)EP [−( ∂

∂2ǫ
fǫ(x) +

∂
∂2ǫ

bǫ)V
′′
ǫ Φ(x)] + 2EP

[

( ∂
∂ǫ
fǫ(x) +

∂
∂ǫ
bǫ)V

′′
ǫ Φ(x)

]

+

ǫEQ[−( ∂
∂2ǫ

fǫ(x) +
∂

∂2ǫ
bǫ)V

′′
ǫ Φ(x)] + 2EQV

′′
ǫ ( ∂

∂ǫ
fǫ(x) +

∂
∂ǫ
bǫ)Φ(x). Thus fork = 2, the Equation (12) is satisfied.

Taking the derivatives of both sides in (12),

2λ
∂

∂k+1ǫ
fǫ

= (1− ǫ)EP [−(
∂

∂k+1ǫ
fǫ(x) +

∂

∂k+1ǫ
bǫ)V

′′
ǫ Φ(x)]

+ (k + 1)EP [(
∂

∂kǫ
fǫ(x) +

∂

∂kǫ
bǫ)V

′′
ǫ Φ(x)]

− (k + 1)EQ(
∂

∂kǫ
fǫ(x) +

∂

∂kǫ
bǫ)V

′′
ǫ Φ(x)

− ǫEQ(
∂

∂k+1ǫ
fǫ(X) +

∂

∂k+1ǫ
bǫ)V

′′
ǫ Φ(x)

from which it follows that (12) holds fork + 1 indeed. Set
ǫ = 0:

2λ
∂

∂k+1ǫ
fǫ|ǫ=0+

EP [(
∂

∂k+1ǫ
fǫ(x)|ǫ=0 +

∂

∂k+1ǫ
bǫ|ǫ=0)V

′′
P Φ(x)] =

(k + 1)EP [(
∂

∂kǫ
fǫ(x)|ǫ=0 +

∂

∂kǫ
bǫ|ǫ=0)V

′′
P Φ(x)]−

(k + 1)EQ(
∂

∂kǫ
fǫ(x)|ǫ=0 +

∂

∂kǫ
bǫ|ǫ=0)V

′′
P Φ(x).

Taking the derivative on both sides of (10) and settingǫ =
0, we have

EP [−(
∂

∂2ǫ
fǫ(x)|ǫ=0 −

∂

∂2ǫ
bǫ|ǫ=0)V

′′
P ] =

EP (
∂

∂ǫ
fǫ(x)|ǫ=0 +

∂

∂ǫ
bǫ|ǫ)

2V ′′′
P +

2EP [(
∂

∂ǫ
fǫ(x)|ǫ=0 +

∂

∂ǫ
bǫ|ǫ=0)V

′′
P ]−

2EQ[(
∂

∂ǫ
fǫ(x)|ǫ=0 +

∂

∂ǫ
bǫ|ǫ=0)V

′′
ǫ ].

(13)

Similar to the above proof, it is easy to verify that

EP [(
∂

∂k+1ǫ
fǫ(X)|ǫ=0 +

∂

∂k+1ǫ
bǫ|ǫ=0)V

′′
P ] =

(k + 1)EP [(
∂

∂kǫ
fǫ(X)|ǫ=0 +

∂

∂kǫ
bǫ|ǫ=0)V

′′
P ]−

(k + 1)EQ(
∂

∂kǫ
fǫ(X)|ǫ=0 +

∂

∂kǫ
bǫ|ǫ=0)V

′′
P .

Thus, we have

L

[

∂

∂k+1ǫ
fǫ|ǫ=0,

∂

∂k+1ǫ
bǫ|ǫ=0

]

= (k + 1)
[

EP (BIFk(Q; (fλ,K), P ))V ′′
P (Φ(x))

− EQ(BIFk(Q; (fλ,K), P )V ′′
P )Φ(x),

+ EP (BIFk(Q; (fλ,K), P ))V ′′
P

− EQ(BIFk(Q; (fλ,K), P )V ′′
P )

]

.
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