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Abstract. Kernel selection is critical to kernel methods. Cross-validation
(CV) is a widely accepted kernel selection method. However, the CV
based estimates generally exhibit a relatively high variance and are there-
fore prone to over-fitting. In order to prevent the high variance, we first
propose a novel version of stability, called kernel stability. This stabil-
ity quantifies the perturbation of the kernel matrix with respect to the
changes in the training set. Then we establish the connection between
the kernel stability and variance of CV. By restricting the derived upper
bound of the variance, we present a kernel selection criterion, which can
prevent the high variance of CV and hence guarantee good generaliza-
tion performance. Furthermore, we derive a closed form for the estimate
of the kernel stability, making the criterion based on the kernel stability
computationally efficient. Theoretical analysis and experimental results
demonstrate that our criterion is sound and effective.

1 Introduction

Kernel methods, such as support vector machine (SVM) [36], kernel ridge re-
gression (KRR) [32] and least squares support vector machine (LSSVM) [35],
have been widely used in machine learning and data mining. The performance
of these algorithms greatly depends on the choice of kernel function, hence kernel
selection becomes one of the key issues both in recent research and application
of kernel methods [9].

It is common to select the kernel selection for kernel methods based on the
generalization error of learning algorithms. However, the generalization error is
not directly computable, as the probability distribution generating the data is
unknown. Therefore, it is necessary to resort to estimates of the generalization
error, either via testing on some data unused for learning (hold-out testing or
cross-validation techniques) or via a bound given by theoretical analysis. To de-
rive the theoretical upper bounds of the generalization error, some measures are
introduced: such as VC dimension [36], Rademacher complexity [2], regularized
risk [33], radius-margin bound [36], compression coefficient [26], Bayesian reg-
ularisation [7], influence function [14], local Rademacher complexity [11], and
eigenvalues perturbation [23], etc.
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While there have been many interesting attempts to use the theoretical
bounds of generalization error or other techniques to select kernel functions,
the most commonly used and widely accepted kernel selection method is still
cross-validation. However, the cross-validation based estimates of performance
generally exhibit a relatively high variance and are therefore prone to over-
fitting [19,27,7,8]. To overcome this limitation, we introduce a notion of kernel
stability, which quantifies the perturbation of the kernel matrix when remov-
ing an arbitrary example from the training set. We illuminate that the variance
of cross-validation for KRR, LSSVM and SVM can be bounded based on the
kernel stability. To prevent the high variance of cross-validation, we propose a
novel kernel selection criterion by restricting the derived upper bound of the
variance. Therefore, the kernel chosen by this criterion can avoid over-fitting
of cross-validation. Furthermore, the closed form of the estimate of the kernel
stability is derived, making the kernel stability computationally efficient. Exper-
imental results demonstrate that our criterion based on kernel stability is a good
choice for kernel selection. To our knowledge, this is the first attempt to use the
notion of stability to entirely quantify the variance of cross-validation for kernel
selection.

The rest of the paper is organized as follows. Related work and preliminaries
are respectively introduced in Section 2 and Section 3. In Section 4, we present
the notion of kernel stability, and use this stability to derive the upper bounds
of the variance of cross-validation for KRR, LSSVM and SVM. In Section 5,
we propose a kernel selection criterion by restricting these bounds. In Section
6, we analyze the performance of our proposed criterion compared with other
state-of-the-art kernel selection criteria. Finally, we conclude in the last section.

2 Related Work

Cross-validation has been studied [27,19,3,15] and used in practice for many
years. However, analyzing the variance of cross-validation is tricky. Bengio and
Grandvalet [3] asserted that there exists no universal unbiased estimator of the
variance of cross-validation. Blum et al. [4] showed that the variance of the cross-
validation estimate is never larger than that of a single holdout estimate. Kumar
et al. [20] generalized the result of [4] considerably, quantifying the variance
reduction as a function of the algorithm’s stability. Unlike the above work which
considers the link between the variance of the cross-validation estimate and that
of the single holdout estimate, in this paper we consider bounding the variance
of cross-validation for some kernel methods, such as KRR, LSSVM and SVM,
based on an appropriately defined notion of stability for kernel selection.

The notion of stability has been studied in various contexts over the past years.
Rogers and Wagner [31] presented the definition of weak hypothesis stability.
Kearns and Ron [16] defined the weak-error stability in the context of proving
sanity check bounds. Kutin and Niyogi [21] defined the uniform stability notion;
see also the work of Bousquet and Elisseeff [5]. The notions of mean square
stability and the loss stability were introduced by Kumar et al. [20], which are
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closely related to the leave-one-out cross-validation. Unfortunately, for most of
these notions of stability, proposed to derive the theoretical generalization error
bounds, it is difficult to compute their specific values [28]. Thus, these notions of
stability are hard to be used in practical kernel selection. To address this issue,
we propose a new version of stability, which is defined on a kernel function, are
computationally efficient and practical for kernel selection.

3 Preliminaries and Notations

Let S = {zi = (xi, yi)}ni=1 be a sample set of size n drawn i.i.d from a fixed,
but unknown probability distribution P on Z = X × Y, where X is the input
space and Y is the output space. Let K : X × X → R be a kernel. The repro-
ducing kernel Hilbert space (RKHS) HK associated with K is defined to be the
completion of the linear span of the set of functions {K(x, ·) : x ∈ X} with the
inner product denoted as 〈·, ·〉K satisfying〈

n∑
i=1

αiK(xi, ·),
n∑

i=1

βiK(x′
i, ·)

〉
K

=
n∑

i,j=1

αiβjK(xi,x
′
j).

We assume that |y| ≤ M for all y ∈ Y and K(x, x) ≤ κ for all x ∈ X .
The learning algorithms we study here are the regularized algorithms:

fS := argmin
f∈HK ,b∈R

{
1

|S|
∑
z∈S

�(yi, f(xi) + b) + λ‖f‖2K
}
,

where �(·, ·) is a loss function, λ is the regularization parameter and |S| is the size
of S. KRR, LSSVM, and SVM are the special cases of the regularized algorithms.
For KRR,

b = 0 and �(f(x), y) = (y − f(x))2,

for LSSVM

�(f(x) + b, y) = (y − f(x)− b)2,

and for SVM

�(f(x) + b, y) = max (0, 1− y (f(x) + b)) .

The (empirical) loss of the hypothesis fS on a set Q is defined as

�fS (Q) =
1

|Q|
∑
z∈Q

�(fS(x), y).

Let S1, . . . , Sk be a random equipartition of S into k parts, called folds, with
|Si| =

⌊
n
k

⌋
. We learn k different hypotheses with fS\Si

being the hypothesis
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learned on all of the data except for the ith fold; Let m = (k− 1)k/n be the size
of the training set for each of these k hypotheses. The k-fold cross-validation
hypothesis, fkcv, which picks one of the {fS\Si

}ki=1 uniformly at random. The
(empirical) loss of fkcv is defined as

�fkcv
(S) =

1

k

k∑
i=1

1

|Si|
∑
z∈Si

�(fS\Si
(x), y).

4 Variance Bounds of Cross-Validation

k-fold cross-validation (k-CV) is the most widely accepted method for kernel se-
lection. However, it is known to exhibit a relatively high variance varS (�fkcv

(S)),

var
S

(�fkcv
(S)) = E

S∼Zn

[
�fkcv

(S)− E
S∼Zn

[�fkcv
(S)]

]2
.

Therefore, k-CV is prone to over-fitting [19,27,7,8]. Obviously, varS (�fkcv
(S)) is

not directly computable, as the probability distribution is unknown. In the next
subsection, we will define a new notion of stability to bound varS (�fkcv

(S)).

4.1 Kernel Stability

The way of making the definition of kernel stability is to start from the goal: to
get bounds on the variance of CV and want these bounds to be tight when the
kernel function satisfies the kernel stability.

It is well known that the kernel matrix contains most of the information
needed by kernel methods. Therefore, we introduce a new notion of stability to
quantify the perturbation of the kernel matrix with respect to the changes in
the training set for kernel selection.

To this end, let T = {xi}mi=1 and the ith removed set T i be

T i = {x1, . . . ,xi−1,xi+1, . . . ,xm}.
Denote the kernel matrix K as [K(xi,xj)]

m
i,j=1, and let Ki be the m ×m ith

removed kernel matrix with{
[Ki]jk = K(xj,xk) if j �= i and k �= i,

[Ki]jk = 0 if j = i or k = i.

One can see that Ki can be considered as the kernel matrix with respect to the
removed set T i.

Definition 1 (Kernel Stability). A kernel function K is of β kernel stability
if the following holds: ∀xi ∈ X , i = 1, . . . ,m,

∀i ∈ {1, . . . ,m}, ‖K −Ki‖2 ≤ β,

where K and Ki are the kernel matrices with respect to T and T i, respectively.
‖K−Ki‖2 is the 2-norm of [K−Ki], that is, the largest eigenvalue of [K−Ki].
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According to the above definition, the kernel stability is used to quantify the
perturbation of the kernel matrix when an arbitrary example is removed. Differ-
ent from the existing notions of stability, see, e.g., [31,16,5,21,29,12,34] and the
references therein, our proposed stability is defined on the kernel matrix. There-
fore, we can estimate its value from empirical data, which makes this stability
usable for kernel selection in practice.

4.2 Upper Bounds via Kernel Stability

We will show that the kernel stability can yield the upper bounds of the variance
of CV for KRR, LSSVM and SVM.

Kernel Ridge Regression. KRR has been successfully applied to solve re-
gression problems, which is a special case of the regularized algorithms when the
loss function

b = 0 and �(f(x), y) = (f(x)− y)2.

Theorem 1. If the kernel function K is of β kernel stability, then for KRR,

var
S
(�fkcv

(S)) ≤ C1β
2,

where C1 = 8
(
κ2M2

λ3m + κM2

λ2m

)2

.

Proof. The proof is given in Appendix A.

This theorem shows that small β can restrict the value of varS(�fkcv
(S)).

Thus, we can select the kernel which has small β to prevent the over-fitting of
CV caused by the high variance.

Least Squares Support Vector Machine. LSSVM is a popular learning
machine for solving classification problems, its loss function is the square loss

�(f(x) + b, y) = (y − f(x)− b)2.

Theorem 2. If the kernel function K is of β kernel stability, then for LSSVM,

var
S
(�fkcv

(S)) ≤ C2β
2,

where C2 =
(

2(κ+1)2

λ3m + 2(κ+1)
λ2m

)2

.

Proof. The proof is given in Appendix B.

Similar with KRR, this theorem also show that we can choose the kernel
function which has small β to prevent the high variance for LSSVM.
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Support Vector Machine. The loss function of SVM is the hinge loss

�(f(x) + b, y) = max (0, 1− y (f(x) + b)) .

Theorem 3. If the kernel function K is of β kernel stability, then for SVM,

var
S
(�fkcv

(S)) ≤ C3β
1
2

(
1 + C4β

1
4

)2

,

where C3 = 8λ2κ
3
2 and C4 =

[
1
4κ

] 1
4 .

Proof. The proof is given in Appendix C.

The bound we obtain for SVM is different from our bounds for KRR and
LSSVM. This is mainly due to the difference between the hinge loss and the
squared loss.

5 Kernel Selection Criterion

Theorem 1, 2 and 3 show that the variance of CV can be bounded via the
kernel stability. Thus, to prevent over-fitting caused by the high variance, it is
reasonable to use the following criterion for kernel selection:

argmin
K∈K

�fkcv
(S) +

η

n
β,

where η is a trade-off parameter and K is an candidate set of kernel functions.
However, by the definition of the kernel stability, we need to try all the possibil-
ities of the training set to compute β, which is infeasible in practice. We should
estimate it from the available empirical data. Therefore, we consider using the
following kernel stability criterion in practice:

argmin
K∈K

k-KS(K) = �fkcv
(S) +

η

n
· max
i∈{1,...,n}

‖K −Ki‖2.

This criterion consists of two parts: bias and variance. �fkcv
(S) can be considered

as the bias, and maxi∈{1,...,n} ‖K −Ki‖2 is the variance.
To apply this criterion, we should compute ‖K − Ki‖2, which requires the

calculation of the eigenvalues of [K − Ki], i = 1, . . . , n. It is computationally
expensive. Fortunately, this problem can be effectively solved by using the closed
form of ‖K −Ki‖2 given by the following theorem.

Theorem 4. ∀ S ∈ Zn and i ∈ {1, . . . , n},

‖K −Ki‖2 =
Kii +

√
K2

ii + 4
∑n

j=1,j �=i K
2
ji

2
.
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Proof. By the definitions of K and Ki, it is easy to verify that the characteristic
polynomial of [K −Ki] is

det(tI − (K −Ki)) = tn−2(t2 −Kiit−
n∑

j=1,j �=i

K2
ji).

Thus, the eigenvalues of K −Ki is

σ(K −Ki) =

⎧⎨
⎩

Kii ±
√

K2
ii + 4

∑n
j=1,j �=i K

2
ji

2
,

n−2︷ ︸︸ ︷
0, . . . , 0

⎫⎬
⎭ .

So, the largest eigenvalue is

Kii +
√
K2

ii + 4
∑n

j=1,j �=i K
2
ji

2
.

Hence we complete the proof of Theorem 4.

This theorem shows that only O(n2) is needed to compute

max
i∈{1,...,n}

‖K −Ki‖2,

making the criterion based on kernel stability computationally efficient.

Remark 1. Instead of choosing a single kernel, several authors consider combin-
ing multiple kernels by some criteria, called multiple kernel learning (MKL), see,
e.g., [22,1,30,18,25], etc. Our criterion k-KS(K) can also be applied to MKL:

argmin
µ=(μ1,...,μk)

k-KS(Kµ), s.t.‖μ‖p = 1,μ ≥ 0,

where Kµ =
∑k

i=1 μiKi, which can be efficiently solved using gradient-based
algorithms [17]. However, in this paper we mainly want to verify the effective-
ness of our kernel stability criterion. Therefore, in our experiments, we focus on
comparing our criterion with other popular kernel selection criteria.

5.1 Time Complexity Analysis

To compute our kernel stability criterion k-KS(K), we need kF to calculate
�fkcv

(S), where F is the time complexity of training on the data set of size
(k − 1)k/n, n is the size of the training set. We also need O(n2) to compute

max
i∈{1,...,n}

‖K −Ki‖2.

Thus, the overall time complexity of k-KS(K) is

O(kF + n2).
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Remark 2. In our previous work [24], we presented a strategy for approximating
the k-fold CV based on the Bouligand influence function [10]. This approximate
method requires the solution of the algorithm only once, which can dramatically
improve the efficiency. Thus, the time complexity of the approximate k-KS(K)
can reduce to O(F + n2).

6 Experiments

In this section, we will compare our proposed kernel selection criteria (k-KS,
k = 5, 10) with 5 popular kernel selection criteria: 5-fold cross-validation (5-
CV), 10-fold cross-validation (10-CV), the efficient leave-one-out cross-validation
(ELOO) [6], Bayesian regularisation (BR) [7], and the latest eigenvalues per-
turbation criterion (EP) [23]. The evaluation is made on 9 popular data sets
from LIBSVM Data. All data sets are normalized to have zero-means and unit-
variances on every attribute to avoid numerical problems. We use the popular
Gaussian kernels

K(x,x′) = exp

(
−‖x− x′‖22

2τ

)

as our candidate kernels,

τ ∈ {2i, i = −10,−9, . . . , 10}.

For each data set, we have run all the methods 10 times with randomly selected
70% of all data for training and the other 30% for test. The learning machine
we considered is LSSVM.

6.1 Accuracy

In this subsection, we will compare the performance of 5-KS (ours), 10-KS (ours),
5-CV, 10-CV, ELOO, BR and EP. In the first experiment, we set η = 1 (the
parameter of the 5-KS and 10-KS criterion, we will explore the effect of this
parameter in the next experiment). The average test errors are reported in Table
1. The elements in this table are obtained as follows: For each training set and
each regularization parameter1 λ, λ ∈ {10i, i = −4, . . . ,−1}, we choose the
kernel by each kernel selection criterion on the training set, and evaluate the
test error for the chosen parameters on the test set. The results in Table 1 can
be summarized as follows: (a) k-KS gives better results than k-CV on most data
sets, k = 5, 10. In particular, for each λ, k-KS outperforms k-CV on 8 (or more)
out of 9 sets, and also give results closed to results of k-CV on the remaining
set. Thus, it indicates that using the kernel stability to restrict the high variance

1 the value of λ we set seems too small at first sight, but in fact, the regularized
algorithm we considered in this paper is 1

n

∑n
i=1 �(f(xi), yi) + λ‖f‖2K , while other

authors usually ignore 1/n. Therefore, the value of λ in our paper is 1/n time of
that of regularized algorithms other authors considered.
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Table 1. The test errors (%) with standard deviations of 5-KS (ours), 10-KS (ours),
5-CV,10-CV, ELOO, BR and EP. For each training set, each regularization parameter
λ (λ ∈ {10−i, i = −4, . . . ,−1}), we choose the kernel by each kernel selection criterion
on the training set, and evaluate the test error for the chosen kernel on test set.

λ = 0.0001

Method 5-CV 5-KS 10-CV 10-KS ELOO BR EP

australian 14.78 ± 2.4 13.23 ± 2.0 15.46 ± 1.6 15.27 ± 1.4 14.30 ± 2.6 14.30 ± 2.6 14.15 ± 2.9
heart 19.01 ± 3.9 18.52 ± 3.1 18.27 ± 3.7 18.17 ± 2.3 18.52 ± 3.4 18.52 ± 3.3 17.83 ± 6.1
ionosphere 4.76 ± 1.5 4.38 ± 1.5 4.67 ± 1.7 4.35 ± 1.9 5.33 ± 2.2 5.13 ± 2.1 6.76 ± 3.9
breast 3.61 ± 0.8 3.41 ± 0.7 3.51 ± 0.6 3.45 ± 0.6 3.41 ± 0.9 3.41 ± 0.9 5.27 ± 1.4
diabetes 23.65 ± 3.7 23.65 ± 3.7 23.83 ± 3.3 23.91 ± 2.9 23.04 ± 2.5 22.96 ± 2.7 30.26 ± 2.3
german 24.60 ± 1.3 24.17 ± 1.2 25.80 ± 1.1 24.67 ± 1.3 24.67 ± 1.4 24.60 ± 1.3 29.67 ± 3.1
liver 26.92 ± 2.5 27.12 ± 2.0 27.50 ± 2.6 26.15 ± 1.0 26.55 ± 1.3 26.73 ± 2.0 30.08 ± 4.7
sonar 14.19 ± 4.0 13.23 ± 3.5 13.87 ± 2.9 12.58 ± 2.4 12.90 ± 4.9 12.90 ± 4.9 17.74 ± 6.7
a2a 18.44 ± 1.0 17.14 ± 0.9 17.94 ± 1.0 15.20 ± 0.6 17.91 ± 1.0 17.34 ± 1.0 18.92 ± 1.5

λ = 0.001

Method 5-CV 5-KS 10-CV 10-KS ELOO BR EP

australian 14.30 ± 1.2 12.19 ± 1.3 13.30 ± 0.7 12.30 ± 0.4 14.43 ± 0.9 13.43 ± 0.9 16.29 ± 3.4
heart 18.27 ± 6.7 15.80 ± 4.0 17.80 ± 4.3 15.31 ± 4.2 14.83 ± 4.8 14.07 ± 4.9 20.77 ± 6.3
ionosphere 5.33 ± 1.9 3.81 ± 1.9 5.33 ± 1.9 4.38 ± 1.0 6.48 ± 2.2 6.48 ± 2.2 5.38 ± 4.6
breast 3.61 ± 0.8 3.42 ± 0.8 3.51 ± 0.8 3.22 ± 0.6 3.32 ± 0.8 3.32 ± 0.8 5.56 ± 1.1
diabetes 23.65 ± 2.4 23.48 ± 1.8 23.83 ± 2.3 23.45 ± 2.2 24.22 ± 1.9 23.22 ± 1.9 26.52 ± 0.4
german 25.07 ± 2.4 24.60 ± 2.4 23.93 ± 1.1 23.87 ± 0.9 24.60 ± 2.4 24.67 ± 2.4 25.13 ± 2.1
liver 29.04 ± 3.5 28.46 ± 3.3 27.12 ± 4.6 26.54 ± 1.8 27.12 ± 2.7 26.82 ± 2.6 28.46 ± 3.3
sonar 14.84 ± 6.7 13.87 ± 4.5 11.61 ± 5.9 11.55 ± 5.7 13.55 ± 6.7 13.83 ± 6.8 13.90 ± 7.3
a2a 17.23 ± 1.1 15.51 ± 0.9 17.35 ± 1.0 16.11 ± 1.0 16.91 ± 0.9 16.94 ± 0.9 19.71 ± 1.1

λ = 0.01

Method 5-CV 5-KS 10-CV 10-KS ELOO BR EP

australian 14.59 ± 2.0 13.82 ± 1.9 14.98 ± 2.0 13.72 ± 2.0 14.01 ± 2.1 14.01 ± 2.1 16.54 ± 3.4
heart 18.27 ± 2.3 17.78 ± 2.2 18.27 ± 1.6 18.02 ± 0.6 17.28 ± 1.5 17.78 ± 2.0 19.74 ± 6.6
ionosphere 4.95 ± 1.5 4.38 ± 1.2 4.95 ± 1.5 5.14 ± 1.2 5.14 ± 2.1 5.14 ± 2.1 9.52 ± 3.3
breast 3.51 ± 0.7 3.46 ± 0.6 3.80 ± 0.6 3.80 ± 0.6 3.75 ± 1.3 3.41 ± 1.0 7.02 ± 0.8
diabetes 24.00 ± 1.4 22.30 ± 1.3 23.48 ± 1.4 23.83 ± 1.3 23.83 ± 1.7 23.83 ± 1.7 25.83 ± 1.8
german 26.40 ± 0.9 26.33 ± 0.7 26.47 ± 0.9 24.93 ± 0.4 26.87 ± 1.1 26.25 ± 1.5 28.67 ± 1.3
liver 28.85 ± 1.8 25.27 ± 1.2 30.00 ± 2.6 28.65 ± 2.4 28.46 ± 2.3 28.65 ± 2.3 29.42 ± 3.0
sonar 14.52 ± 5.4 13.55 ± 2.9 13.23 ± 4.4 12.23 ± 3.5 12.58 ± 3.8 11.94 ± 4.0 14.74 ± 4.0
a2a 18.88 ± 2.0 17.76 ± 1.1 18.97 ± 1.9 17.82 ± 1.7 18.76 ± 2.1 18.41 ± 2.5 20.15 ± 2.5

λ = 0.1

Method 5-CV 5-KS 10-CV 10-KS ELOO BR EP

australian 14.30 ± 2.1 13.53 ± 1.8 14.30 ± 2.1 14.20 ± 0.7 13.91 ± 1.4 13.41 ± 1.7 14.54 ± 2.9
heart 19.51 ± 3.2 19.26 ± 2.9 19.26 ± 3.4 18.26 ± 2.9 19.51 ± 3.2 19.26 ± 3.4 22.65 ± 4.0
ionosphere 12.76 ± 10.5 8.38 ± 3.7 9.14 ± 4.2 8.28 ± 3.5 9.33 ± 4.3 9.14 ± 4.6 12.95 ± 3.9
breast 3.92 ± 1.4 3.22 ± 1.3 3.62 ± 1.3 3.12 ± 1.4 3.41 ± 1.1 3.21 ± 1.6 4.98 ± 1.0
diabetes 29.65 ± 1.8 29.83 ± 2.0 29.74 ± 2.1 29.48 ± 1.8 29.57 ± 1.7 29.57 ± 1.7 35.65 ± 1.4
german 31.21 ± 1.7 27.40 ± 1.5 27.40 ± 1.4 26.51 ± 1.2 25.40 ± 1.1 29.40 ± 1.6 31.40 ± 1.4
liver 33.46 ± 7.4 31.08 ± 7.0 33.08 ± 8.0 32.42 ± 6.3 31.85 ± 8.6 38.65 ± 5.8 33.08 ± 8.0
sonar 27.81 ± 9.6 26.06 ± 9.3 27.42 ± 9.3 27.10 ± 8.7 26.77 ± 9.3 26.77 ± 9.3 27.10 ± 5.0
a2a 24.68 ± 1.7 22.18 ± 1.5 25.68 ± 1.9 22.68 ± 1.8 24.68 ± 1.7 24.31 ± 0.8 23.21 ± 1.7
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Fig. 1. The average test errors using 5-KS and 10-KS on different η. The regularization
parameter λ is set as 0.001 (in Table 1, one can see that for most data sets, λ = 0.001
can achieve good results. Thus, we only consider setting λ = 0.001). For each training
set, each η, we choose the kernel by 5-KS and 10-KS kernel selection criteria on the
training set, and evaluate the test errors for the chosen parameters on test set.

of cross-validation can guarantee good generalization performance; (b) k-KS is
better than BR on most data sets. In particular, for each λ, k-KS outperforms
k-CV on 6 (or more) out of 9 sets; (c) BR is comparable or better than ELOO
on most data sets; (d) The performances of the 5-KS and 10-KS are comparable.

6.2 Effect of the Parameter η

In this experiments, we will explore the effect of the η. The average test errors
on different η are given in Figure 1. For each training set, each η, we choose
the kernel by 5-KS and 10-KS kernel selection criteria on the training set, and
evaluate the test errors for the chosen parameters on test set. It turns out that
η is robust, and the test errors are not very sensitive w.r.t η ∈ [2−2, 25] on most
data sets. Moreover, we find that η ∈ [2−2, 25] is a good choice for k-KS. Thus,
we can select η ∈ [2−2, 25] in practice.
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7 Conclusion

We propose a novel kernel selection criterion via a newly defined concept of kernel
stability, which can prevent over-fitting of cross-validation (CV) caused by high
variance. We illuminate that the variance of CV for KRR, LSSVM and SVM can
be bounded with the kernel stability, so we can use this stability to control the
variance of CV to avoid over-fitting. Moreover, we derive a closed form of the
estimate of the kernel stability, making the kernel selection criterion based on
the kernel stability computationally efficient and practically useful. Finally, our
kernel selection criterion is theoretically justified and experimentally validated.
To our knowledge, this is the first attempt to use the notion of stability to control
the variance of CV for kernel selection in kernel methods.

Future work includes extending our method to other kernel based methods
and multiple kernel learning, and using the notion of the kernel stability to derive
the generalization error bounds for kernel methods.

Acknowledgments. The work is supported in part by the National Natural
Science Foundation of China under grant No. 61170019.

Appendix A: Proof of Theorem 1

Lemma 1 (Proposition 1 in [13]). Let h′ denote the hypothesis returned
by KRR when using the approximate kernel matrix K ′. Then, the following
inequality holds for all x ∈ X :

|h′(x)− h(x)| ≤ κM

λ2m
‖K ′ −K‖2.

Definition 2 (Loss stability [20]). The loss stability of a learning algorithm
A trained on m examples and with respect to a loss � is defined as

lsm,�(A) = ET :|T |=m,z′,z

[(
�′A(T )(z)− �′

A(T z′)(z)
)2
]
,

where T z′
denote the set of examples obtained by replacing an example chosen

uniformly at random from T by z′. A learning algorithm A is γ-loss stable if
lsm,�(A) ≤ γ.

Lemma 2 (Theorem 1 in [20]). Consider any learning algorithm A that is
γ-loss stable with respect to �. Then

var
S
(�fkcv

(S)) ≤ 1

k
var
S
(�fS\S1

(S1)) +

(
1− 1

k

)
γ.

Proof (of Theorem 1). Note that fT i(x) is the hypothesis returned by KRR using
Ki. According to the definition of β kernel stability, we have ‖K −Ki‖2 ≤ β.
By Lemma 1,

|fT (x)− fT i(x)| ≤ κM

λ2m
‖Ki −K‖2 ≤ βκM

λ2m
. (1)
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Since fT (x) =
∑m

i=1 αiK(x,xi) = kxα, where α = [K +mλI]−1y and kx =
(K(x,x1), . . . ,K(x,xm))T. Thus, we have

|fT (x)| = |kT
xα| = |kx[K +mλI]−1y|

≤ ‖kx‖‖y‖‖[K +mλI]−1‖2
≤ κ

√
mM

√
m

mλ

=
κM

λ
.

(2)

Thus, ∀z ∈ Z, ∀ T ∈ Zm and ∀i ∈ {1, . . . ,m},
|�fT (z)− �f

Ti
(z)|

= |(fT (x)− y)2 − (fT i(x)− y)2|
= |(fT (x)− fT i(x))(fT (x) + fT i(x)− 2y)|

≤
(
βκM

λ2m

)
·
(
2κM

λ
+ 2M

)
.

(3)

According to Lemma 2 in [20], we have

lsm,�(A) ≤ ET,z′,z

[(
�A(T )(z)− �A(T z′)(z)

)2
]
. (4)

So, from (3), ∀T, ∀z, ∀z′,
(
�fT (z)− �f

Tz′ (z)
)2

≤

≤
(∣∣�fT (z)− �fTi (z)

∣∣+ ∣∣∣�fTi (z)− �A(T z′)(z)
∣∣∣)2

≤
(
2β

(
2κ2M

λ3m
+

2κM2

λ2m

))2

= C1β
2.

Thus, according to (4), we have

lsm,�(A) ≤ C1β
2 = γ. (5)

According to Lemma 5 in [20], we have

var
S
(�fS\S1

(S1)) = cov(�fS\S1
(S1), �fS\S1

(S1))

= ES\S1,z′
1,z2

[(
�′fS\S1

(z2)− �′f
(S\S1)

z′
1

(z2)

)2
]

= lsm,�(A)

≤ C1β
2 = γ (According to (5)).

(6)

Substituting (5) and (6) into Lemma 2, we complete the proof of Theorem 1.
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Appendix B: Proof of Theorem 2

Proof (of Theorem 2). For LSSVM,

fT (x) = kT
xα+ b = k̃xM

−1ỹ,

where

k̃x = (K(x,x1), . . . ,K(x,xm), 1), ỹ = [y1, . . . , ym, 0]T

and

M =

[
K +mλI 1

1T 0

]
,

Thus, it is easy to verify that

|fT (x)− fT i(x)| = |k̃x(M
−1ỹ −M−1

i ỹ)|,

where

Mi =

[
Ki +mλI 1

1T 0

]
.

Thus,

|fT (x)− fT i(x)| ≤ ‖k̃x‖‖M−1 −M−1
i ‖2‖ỹ‖

≤
√
mκ2 + 1‖M−1 −M−1

i ‖√m

≤ m(κ+ 1)‖M−1(M −Mi)M
−1
i ‖2

≤ m(κ+ 1)‖M−1‖2‖M −Mi‖2‖M−1
i ‖2

≤ m(κ+ 1)
‖M −Mi‖2

m2λ2

≤ κ+ 1

mλ2
β.

Similar with the proof of Eq (2), we can obtain fT (x) ≤ κ+1
λ . Thus, we have

|�fT (z)− �fTi (z)| = |(fT (x)− y)2 − (fT i(x)− y)2|
= |(fT (x)− fT i(x))(fT (x) + fT i(x)− 2y)|

≤
(
κ+ 1

mλ2
β

)(
2κ+ 2

λ
+ 2

)
.

Similar with the proof of (5) and (6), it is easy to verify that

lsm,�(A) ≤ C2β
2 = γ

and

var
S
(�fS\S1

(S1)) ≤ C2β
2 = γ.

From Lemma 2, we prove Theorem 2.
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Appendix C: Proof of Theorem3

Lemma 3 (Proposition 2 in [13]). Let h′ denote the hypothesis returned
by SVMs when using the approximate kernel matrix K ′. Then, the following
inequality holds for all x ∈ X :

|h′(x)− h(x)| ≤
√
2λκ

3
4 ‖K ′ −K‖ 1

4
2

[
1 +

[‖K ′ −K‖2
4κ

] 1
4

]
.

Proof (of Theorem 3). Note that fT i(x) is the hypothesis returned by SVM
using the ith removed kernel matrix Ki. By Lemma 3 and the definition of β
kernel stability,

|fT (x)− fT i(x)| ≤
√
2λκ

3
4β

1
4

[
1 +

[
β

4κ

] 1
4

]
.

Since the hinge loss � is 1-Lipschitz, so ∀z, T, z′

|�fT (z)− �fTi (z)| ≤
√
2λκ

3
4β

1
4

[
1 +

[
β

4κ

] 1
4

]
.

Similar with the proof of (5) and (6), we can obtain that

lsm,�(A) ≤ C3β
1
2

(
1 + C3β

1
4

)2

= γ

and

var
S
(�fS\S1

(S1)) ≤ C3β
1
2

(
1 + C3β

1
4

)2

= γ.

Thus, Theorem 3 follows from substituting the above two equations to Lemma 2.
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