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ABSTRACT
Kernel selection is one of the key issues both in recent re-
search and application of kernel methods. This is usually
done by minimizing either an estimate of generalization error
or some other related performance measure. It is well known
that a kernel matrix can be interpreted as an empirical ver-
sion of a continuous integral operator, and its eigenvalues
converge to the eigenvalues of integral operator. In this pa-
per, we introduce new kernel selection criteria based on the
eigenvalues perturbation of the integral operator. This per-
turbation quantifies the difference between the eigenvalues
of the kernel matrix and those of the integral operator. We
establish the connection between eigenvalues perturbation
and generalization error. By minimizing the derived gener-
alization error bounds, we propose the kernel selection cri-
teria. Therefore the kernel chosen by our proposed criteria
can guarantee good generalization performance. To compute
the values of our criteria, we present a method to obtain the
eigenvalues of integral operator via the Fourier transform.
Experiments on benchmark datasets demonstrate that our
kernel selection criteria are sound and effective.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Parameter Learn-
ing ; I.5.2 [Pattern Recognition]: Design Methodology—
Classifier Design and Evaluation; H.2.8 [Database Man-
agement]: Database Applications—Data Mining

General Terms
Algorithms, Theory, Experimentation

Keywords
Kernel Selection, Eigenvalues Perturbation, Integral Opera-
tor, Generalization Error.
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1. INTRODUCTION
Kernel methods [33, 29, 10, 30, 31] have been widely used

in pattern recognition and machine learning. Because the
performance of kernel methods greatly depends on the choice
of the kernel function, the kernel selection becomes an im-
portant topic in kernel methods. A related problem is the
evaluation of the generalization ability of learning algorithm-
s. In fact, it is common to select the optimal kernel function
by choosing the one with the lowest generalization error.

Obviously, the generalization error is not directly com-
putable, as the probability distribution generating the data
is unknown, therefore it is necessary to resort to estimates
of its value. The generalization error can be estimated ei-
ther via theoretical bounds or testing on some unused data
(hold-out testing or cross validation). To estimate the upper
bounds of the generalization error, some complexity mea-
sures are introduced: such as VC dimension [33], Rademach-
er complexity [3], maximal discrepancy [2], regularized risk
[29], radius-margin bound [33] and compression coefficien-
t [24]. However, for most of these complexity measures,
proposed to derive theoretical generalization error bounds,
it is difficult to compute their values [25, 26], which make
them hard to be used for kernel selection in practice. Min-
imizing the empirical estimate of the generalization error is
an alternative to kernel selection. K-fold cross-validation
(KCV) and leave-one-out cross-validation (LOO) [9, 23] are
two popular empirical estimates. Although KCV and LOO
are widely used in many fields, they have their dark sides:
(a) the overall learning problem may over-fitting the cross-
validation error [6, 7]; (b) high computational cost. For the
sake of efficiency, some approximate KCV and LOO criteria
are given: such as generalized cross-validation (GCV)[19],
generalized comparative Kullback-Liebler distance (GCKL)
[34], generalized approximate cross-validation (GACV) [35],
span bound [8, 9] and influence function [15].

Based on the similarity, Cristianini et al. [14] present a
kernel selection criterion called kernel target alignment (K-
TA). Nguyen and Ho [25, 26] point out several drawbacks
of the KTA, and propose a surrogate measure (called FSM)
to evaluate the goodness of a kernel function via the data
distribution in the feature space. Similar to KTA, Cortes et
al. [12] present a centered kernel target alignment criteri-
on (CKTA) with a centered kernel matrix. Although KTA,
CKTA and FSM are widely used, the connection between
these criteria and generalization error for specific learning
algorithms has not been established, so the kernels chosen
by these criteria may not guarantee good generalization per-
formance.
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It is well known that the kernel matrix contains most of
the information needed by the kernel methods, and its eigen-
values play an important role in kernel matrix. Because the
kernel matrix can be interpreted as an empirical version of
a continuous integral operator, and its eigenvalues converge
to the eigenvalues of integral operator [5, 20, 28], therefore
we aim at presenting new kernel selection criteria based on
the eigenvalues perturbation of integral operator in this pa-
per. This perturbation quantifies the difference between the
eigenvalues of kernel matrix and those of integral operator.
Different from most of the existing complexity measures,
we can compute the value of eigenvalues perturbation for
any given kernel function from empirical data, which makes
it usable for kernel selection. We first use the eigenvalues
perturbation to derive generalization error bounds for kernel
ridge regression (KRR) and Support Vector Machine (SVM).
Then, by minimizing the derived generalization error bound-
s, we propose two new kernel selection criteria: EPKRR
(for KRR) and EPSVM (for SVM). To compute the values
of our proposed criteria, we propose a method to compute
the eigenvalues of integral operator based on the Fourier
transform. For the popular Gaussian kernel and Laplacian
kernel, the closed form of eigenvalues of their correspond-
ing integral operators are given. Experimental results show
that, for classification, the kernel chosen by EPSVM gives
better results than those chosen by the popular classification
criteria: CKTA, FSM and KCV, and for regression, EPKRR
better than the popular regression criteria: KCV, LOO and
GCV.
The rest of the paper is organized as follows. In Section 2,

we introduce some elementary facts. In Section 3, we present
the definition of eigenvalues perturbation, and use this def-
inition to derive generalization error bounds for KRR and
SVM. In Section 4, we propose the kernel selection criteria
by minimizing the derived generalization error bounds, and
present a method to compute the eigenvalues of integral op-
erator. In Section 5 we empirically analyze the performance
of our proposed kernel selection criteria compared with other
popular criteria. We end in Section 6 with conclusion.

2. NOTATIONS AND PRELIMINARIES
Given a training set

S = {zi = (xi, yi)}mi=1

of size m drawn identically and independently distributed
from a fixed, but unknown probability measure ρ on Z =
X × Y, where Y ⊆ R for regression, and Y ⊆ {+1,−1} for
classification.
Let K : X × X → R be a kernel, that is, K is symmetric

and for any finite set of points {x1, . . . ,xm} ⊂ X , the kernel
matrix

K =

[
1

m
K(xi,xj)

]m
i,j=1

is positive semidefinite. The reproducing kernel Hilbert s-
pace (RKHS) HK associated with the kernel K is defined to
be the completion of the linear span of the set of functions

{Kx = K(x, ·) : x ∈ X}

with the inner product denoted as ⟨·, ·⟩K satisfying

⟨Kx,Kx′⟩K = K(x,x′).

The kernel matrix K can be interpreted as an empirical
version of the continuous integral operator LK : L2

ρ(X ) →
L2

ρ(X ), which is defined by

(LKf)(x) =

∫
X
K(x, t)f(t)dρX (t), (1)

where ρX is the marginal distribution of ρ on X and L2
ρ(X )

is the square-integrable space with respect to ρX . This is a
self-adjoint, compact operator that has eigenvalues

λ1(LK) ≥ λ2(LK) ≥ . . . ≥ λi(LK) ≥ . . . ≥ 0.

Since the kernel matrix K is positive semidefinite, its eigen-
values satisfy

λ1(K) ≥ λ2(K) ≥ . . . ≥ λm(K) ≥ 0.

The eigenvalue λi(K) converges to the eigenvalue λi(LK) as
the number of samples tends to infinity [5, 20, 28].

The learning algorithms we study here are the regularized
algorithms [16]:

fS := arg min
f∈HK

{
1

m

m∑
i=1

ℓ(yi, f(xi)) + λ∥f∥2K

}
, (2)

where ℓ(·, ·) is a loss function, ∥f∥2K is the norm in RKHS
and λ is the regularized parameter. Kernel Ridge Regression
(KRR) [17] and Support Vector Machine (SVM) [31, 10, 30]
are only different in the choice of loss function. For KRR

ℓ(f(x), y) = (y − f(x))2,

and for SVM

ℓ(f(x), y) = max(0, 1− yf(x)).

We will consider measuring the performance of the reg-
ularized algorithms. The main quantity we are interested
in is the risk or generalization error which is a random
variable depending on the training set S and is defined as

R(S) = Ez[ℓ(fS(x), y)],

where Ez[·] is the expectation when z = (x, y) is sampled
according to ρ. Unfortunately, R(S) can’t be computed since
ρ is unknown. Thus, we estimate it using the empirical error
Remp(S) defined as

Remp(S) =
1

m

m∑
i=1

ℓ(fS(xi), yi).

We will bound the deviation between the empirical error and
generalization error based on the eigenvalues perturbation
which is defined in the next section.

3. GENERALIZATION ERROR BOUNDS
WITH EIGENVALUES PERTURBATION

In this section, we first give the definition of eigenvalues
perturbation and then use this definition to derive general-
ization error bounds for KRR and SVM.

3.1 Eigenvalues Perturbation
The way of defining of eigenvalues perturbation is to start

from the goal: to get bounds on the generalization error
and want these bounds to be tight when the kernel function
satisfies the eigenvalues perturbation. In the following, we
assume supx∈X K(x,x) = κ and ∀y ∈ Y, |y| ≤ M .
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Because the kernel matrix contains most of the informa-
tion needed by the regularized algorithms, and its eigenval-
ues converge to the eigenvalues of integral operator. There-
fore we introduce the notion of eigenvalues perturbation,
which quantifies the difference between the eigenvalues of
kernel matrix and those of integral operator.

Definition 1 (Eigenvalues Perturbation). The k-
ernel function K is β eigenvalues perturbation if the follow-
ing holds:

∀S ∈ Zm, ∀i ∈ {1, . . . ,m}, |λi(K)− λi(LK)| ≤ β,

where K is the kernel matrix, [K]i,j = 1
m
K(xi,xj), LK is

the integral operator defined in (1), λi(K) and λi(LK) are
the eigenvalues of K and LK , respectively.

The eigenvalues perturbation is defined on the kernel ma-
trix and integral operator, therefore, if we obtain the eigen-
values of integral operator (the eigenvalues of integral op-
erator induced by the popular radial kernels are given in
Theorem 5), we can estimate its value for any given kernel
function from empirical data, which makes it able to be used
for kernel selection. In the next, we will show that the eigen-
values perturbation can yield upper bounds of generalization
error for KRR and SVM.

3.2 Kernel Ridge Regression
KRR has successfully been applied to solve regression

problems, which is a special case of the regularized algo-
rithms when the loss function ℓ(f(x), y) = (f(x)− y)2. For
KRR, the generalization error R(S) = Ez(f(x) − y)2 and
the empirical error Remp(S) =

1
m

∑m
i=1(f(xi)− yi)

2.

Theorem 1. If the kernel function K is β eigenvalues
perturbation, then for the KRR, with probability 1 − δ, we
have

R(S) ≤ Remp(S) +

√
P 2 + 24Pm(Cβ +Q) + Pm(Cβ +Q)2

2mδ
,

where C = 2κM
λ

, Q = 2κ
m−1

and P = 2κ2M2

λ2 + 2M2.

The proof of this theorem is given in Appendix.A.
This theorem shows that small Remp(S) and β can guar-

antee good generalization performance for KRR.
Next, we also give a better exponential generalization er-

ror bound based on concentration inequalities.

Theorem 2. If the kernel function K is β spectral per-
turbation stability, then for the KRR, with probability 1− δ,
we have

R(S) ≤ Remp(S) + 4M(Cβ +Q) + 2M(Cβ +Q)2

+
(
8mM(Cβ +Q) + 4m(Cβ +Q)2 + P

)√ ln 1/δ

2m
,

where C = 2κM
λ

, Q = 2κ
m−1

and P = 2κ2M2

λ2 + 2M2.

The proof of this theorem is given in Appendix.B.

3.3 Support Vector Machine
SVM has successfully been applied to solve classification

problems, its loss function is the hinge loss ℓ(f(x), y) =
max(0, 1− yf(x)). For SVM, R(S) = Ez max(0, 1− yf(x))
and Remp(S) =

1
m

∑m
i=1 max(0, 1− yif(xi)).

Theorem 3. If the kernel function K is β eigenvalues
perturbation, then for the SVM, with probability 1− δ,

R(S) ≤ Remp(S) +

√
Q2 + 12Qmβ

1
4 (1 + (β/(2κ))

1
4 )

2mδ
,

where C = 8
1
4 λκ

3
4 , Q = 1 +Mλκ.

The proof of this theorem is given in Appendix.C.
This theorem shows that, to guarantee good generaliza-

tion performance for SVM, we should select the kernel func-
tion which has small Remp(S) and β.

In the next, we give a better exponential generalization
error bound.

Theorem 4. If the kernel function K is β eigenvalues
perturbation, then for the SVM, with probability 1− δ,

R(S) ≤ Remp(S) + 2Cβ
1
4

(
1 +

[
β

2κ

] 1
4

)

+

(
4mβ

1
4

(
1 +

[
β

2κ

] 1
4

)
+Q

)√
ln 1/δ

2m
,

where C = 8
1
4 λκ

3
4 and Q = 1 +Mλκ.

The proof of this theorem is given in Appendix.D.
The bounds we obtain for SVM are weaker than our bound-

s for KRR. This is due mainly to the different loss functions
defining the optimization problems of these algorithms.

Remark 1. In this paper, although we only consider the
KRR and SVM algorithms, the above results can be easy
to be extended to other kernel-based methods, such as the
kernel-based logistic regression, least squares Support Vector
Machines (LSSVM) [32].

4. KERNEL SELECTION CRITERIA
By the generalization error bounds in Theorem 1 and 2

for KRR, and Theorem 3 and 4 for SVM, to guarantee good
generalization performance, we should select the kernel by
minimizing

∑m
i=1(fS(xi)− yi)

2 + δβ for KRR and minimiz-
ing

∑m
i=1 max(0, 1− yifS(xi))+ δβ for SVM, where δ > 0 is

the regularization coefficient. However, by the definition of
eigenvalues perturbation, we should try all the possibilities
of the set S (∀S ∈ Zm) to compute the β, which is infea-
sible in practice. We should estimate it from the available
empirical data. Therefore, we consider using the following
eigenvalues perturbation criteria:
For KRR,

EPKRR(K) =
1

m

m∑
i=1

(yi − fS(x))
2

+ δ

m∑
i=1

|λi(K)− λi(LK)| ,

and for SVM,

EPSVM(K) =
1

m

m∑
i=1

max(0, 1− yifS(xi))

+ δ

m∑
i=1

|λi(K)− λi(LK)| .
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In order to use these criteria for kernel selection, we should
compute the eigenvalues of integral operator. In the follow-
ing, we will present the method to compute the eigenvalues
of integral operator induced by the popular radial kernels,
such as Gaussian kernel and Laplacian kernel.

Theorem 5. Assuming the radial kernel K(x−x′) is de-
fined on [−M/2,M/2]d, M > 0, d is the dimension of the
input data, then the eigenvalues of integral operator induced
by the radial kernel K(x− x′) are

F (n) =

d∏
i=1

F (ni),

where n = (n1, . . . , nd), ni ∈ N ∪ {0},

F (ni) =

∫ M/2

−M/2

K(t) cosniwtdt, w = 2π/M.

Proof. We assume d = 1. A generalization to multidi-
mensional kernels (d > 1) is straightforward. Since the radi-
al kernelK(x−x′) is an even function defined on [−M/2,M/2],
therefore, by the Fourier transform, we have

K(x− x′) = a0 +

∞∑
n=1

an cosnw(x− x′),

where a0 = 1
M
F (0), an = 2

M
F (n), n = 1, 2, . . . ,∞. By the

definition of integral operator (see (1)), we have

LK(

√
2

M
sinnwx) =

∫ M/2

−M/2

K(x− t)

√
2

M
sinnwtdt

=

∫ M/2

−M/2

(
a0 +

∞∑
n=1

an cosnw(x− t)

)√
2

M
sinnwtdt.

Note that cosnw(x−t) = cosnwx cosnwt+sinnwx sinnwt,
and

1√
M

,

√
2

M
sin(wx),

√
2

M
cos(wx), . . . ,√

2

M
sin(wnx),

√
2

M
cos(wnx), . . .

is a standard orthogonal basis of the square integrable space
L2

[−M/2,M/2]. Thus, it is easy to verify that∫ M/2

−M/2

(
a0 +

∞∑
n=1

an cosnw(x− t)

)√
2

M
sinnwtdt

= F (n)

√
2

M
sinnwx.

In the same way, we can obtain that

LK(

√
2

M
cosnwx) = F (n)

√
2

M
cosnwx, n = 1, . . .

LK(

√
1

M
) = F (0)

√
1

M
.

Therefore, F (n) is the eigenvalue of the integral operator

LK , its associate eigenfunction is
√

2
M

sinnwx or
√

2
M

cosnwx,

n = 1, . . .. F (0) is the eigenvalue of LK , its associate eigen-

function is
√

1
M
.

Table 1: Radial kernels and eigenvalues of their cor-
responding integral operators.

Radial Kernel K(x − x′) F (n) (M = ∞)

Gaussian Kernel exp

(
− ∥x−x′∥22

2

)
(2π)−

d
2 exp

(
− ∥n∥22

2

)
Laplacian Kernel exp

(
−∥x − x′∥1

) ∏
d

1

π(1+n2
d
)

By the above theorem, when the radial kernel K(x−x′) is
defined on Rd, that is M = ∞, it is easy to obtain the closed
form of eigenvalues of the integral operators induced by the
Gaussian kernel and Laplacian kernel. The close forms of
Gaussian kernel and Laplacian kernel are given in Table 1.

Remark 2. Instead of choosing a single kernel, some re-
searchers consider combining multiple kernels by some cri-
teria, called multiple kernel learning (MKL), see, e.g., [22,
1, 27, 11, 21] and the references therein. Our criteria can
be used for MKL. However, in this paper, we mainly want to
verify the effectiveness of our eigenvalues perturbation crite-
ria. How to utilize our proposed criteria for MKL is beyond
the scope of this article.

5. EXPERIMENTS
In this section, we will empirically analyze the perfor-

mance of our proposed EPSVM and EPKRR criteria.
The evaluation is made on 15 publicly available data set-

s from UCI repository1 and LIBSVM Data2: 8 data sets
for classification seen in Table 2, and 7 data sets for regres-
sion seen in Table 3. All data sets are normalized to have
zero-means and unit-variances on every attribute to avoid
numerical problems caused by large value kernel matrices.

We use Gaussian kernels

KGauss(x,x
′) = exp

(
−∥x− x′∥22

τ

)
as our candidate kernels, τ ∈ {2i, i = −8,−9, . . . , 5, 6}. For
each data set, we have run all the methods 30 times with
random partition of the datasets (50% of all the examples
for training and the other 50% for testing).

5.1 Classification
We will compare our proposed EPSVM criterion with five

popular classification criteria: centered kernel target align-
ment (CKTA) [12], feature space-based kernel matrix evalu-
ation (FSM) [25], K-fold cross validation, K = 3, 5, 10. The
learning algorithm we use here is the SVM.

In the first experiment, we set the regularization coeffi-
cient δ = 100 (the parameter of the EPSVM criterion, we
will explore the effect of this parameter in the next exper-
iment). The average test errors with standard deviations
are reported in Table 2. The elements in this table are ob-
tained as follows. For each training set, each regularized
parameter λ (λ ∈ {10i, i = −3,−2, 1}), we choose the kernel
by each kernel selection criterion on the training set, and
evaluate the test error for the chosen parameters on testing
set. Then we compute the means over all runs on the dif-
ferent partitions. The results in Table 2 can be summarized
as follows: (a) EPSVM gives the best results on most data

1http://www.ics.uci.edu/∼mlearn/MLRepository.html
2http://www.csie.ntu.edu.tw/∼cjlin/libsvm.
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Table 2: The test errors (%) with standard deviations (δ = 100). For each training set, each regularized
parameter λ, we choose the kernel by each kernel selection criterion on the training set, and evaluate the
test error for the chosen parameters on the testing set. Then we compute the means over all runs on the
different partitions.

λ = 0.001

Method EPSVM CKTA FSM 3-CV 5-CV 10-CV

australian 14.01 ± 2.66 14.97 ± 1.33 20.17 ± 1.65 14.03 ± 1.04 13.97 ± 1.20 14.03 ± 1.04
heart 15.33 ± 3.33 15.56 ± 2.92 25.33 ± 3.33 20.00 ± 3.47 21.19 ± 5.70 17.33 ± 2.65
ionosphere 11.23 ± 8.21 19.94 ± 1.43 29.26 ± 1.82 10.29 ± 1.34 10.40 ± 0.75 11.54 ± 1.69
breast-cancer 3.58 ± 0.38 2.58 ± 0.56 3.05 ± 0.71 3.87 ± 0.96 3.23 ± 0.41 2.93 ± 0.66
diabetes 25.16 ± 1.25 25.52 ± 1.22 31.30 ± 1.51 24.53 ± 1.24 24.27 ± 1.44 24.27 ± 1.44
german.numer 26.40 ± 6.23 27.68 ± 1.11 45.00 ± 1.12 29.84 ± 3.79 27.12 ± 2.63 28.12 ± 4.67
liver-disorders 38.93 ± 3.12 39.77 ± 2.62 40.93 ± 3.12 38.60 ± 3.69 37.09 ± 3.80 35.93 ± 5.98
sonar 13.23 ± 5.04 14.23 ± 3.93 21.15 ± 6.04 15.00 ± 3.76 14.62 ± 3.56 13.65 ± 3.75

λ = 0.01

Method EPSVM CKTA FSM 3-CV 5-CV 10-CV

australian 12.38 ± 0.86 13.65 ± 1.13 20.35 ± 2.08 13.80 ± 1.21 13.68 ± 1.13 13.80 ± 1.21
heart 19.56 ± 1.86 16.30 ± 1.74 24.00 ± 2.94 17.04 ± 2.46 16.15 ± 1.99 16.13 ± 1.69
ionosphere 14.74 ± 3.97 11.54 ± 2.12 31.77 ± 2.54 12.11 ± 3.17 12.00 ± 1.46 10.51 ± 1.79
breast-cancer 2.28 ± 0.52 2.99 ± 0.64 2.82 ± 0.87 3.52 ± 1.04 3.99 ± 0.71 3.99 ± 0.71
diabetes 24.22 ± 1.67 23.28 ± 1.56 29.48 ± 2.21 26.98 ± 3.53 28.75 ± 5.29 29.32 ± 4.39
german.numer 25.84 ± 2.84 26.44 ± 2.44 44.64 ± 0.80 29.56 ± 1.58 30.04 ± 1.65 29.36 ± 2.97
liver-disorders 39.42 ± 4.06 38.84 ± 2.95 39.42 ± 3.97 40.12 ± 1.70 37.91 ± 5.11 38.95 ± 5.71
sonar 16.12 ± 2.39 16.92 ± 2.60 18.08 ± 4.73 18.08 ± 2.58 16.92 ± 3.09 17.88 ± 1.61

λ = 0.1

Method EPSVM CKTA FSM 3-CV 5-CV 10-CV

australian 13.51 ± 1.38 17.91 ± 1.25 19.25 ± 1.08 16.64 ± 1.31 16.46 ± 4.15 17.10 ± 3.97
heart 18.96 ± 3.08 24.59 ± 11.04 24.74 ± 3.08 25.04 ± 10.65 20.30 ± 5.20 19.70 ± 4.37
ionosphere 22.40 ± 7.08 20.00 ± 3.08 29.94 ± 4.17 22.17 ± 5.13 22.40 ± 4.70 23.77 ± 6.98
breast-cancer 4.11 ± 0.36 3.40 ± 0.26 3.11 ± 0.39 5.81 ± 4.66 3.58 ± 0.91 3.64 ± 1.13
diabetes 30.47 ± 7.45 25.57 ± 2.32 28.85 ± 2.63 31.25 ± 3.01 33.85 ± 2.92 32.97 ± 2.26
german.numer 29.52 ± 1.29 29.84 ± 1.26 45.24 ± 1.17 29.84 ± 1.26 29.76 ± 1.16 29.76 ± 1.16
liver-disorders 40.58 ± 2.07 41.98 ± 1.99 42.67 ± 3.41 40.35 ± 4.64 40.70 ± 4.98 40.12 ± 4.81
sonar 21.35 ± 7.94 23.08 ± 7.54 21.92 ± 3.43 22.88 ± 9.06 22.50 ± 8.56 23.46 ± 9.82

λ = 1

Method EPSVM CKTA FSM 3-CV 5-CV 10-CV

australian 16.41 ± 2.54 44.70 ± 2.23 20.81 ± 0.72 22.84 ± 13.26 16.75 ± 1.89 28.06 ± 15.07
heart 19.56 ± 3.42 46.81 ± 6.78 24.59 ± 2.31 30.52 ± 11.24 36.89 ± 10.75 29.19 ± 10.42
ionosphere 28.77 ± 1.74 30.06 ± 3.01 30.40 ± 1.36 28.34 ± 10.91 27.89 ± 10.15 26.74 ± 12.52
breast-cancer 5.02 ± 2.55 5.87 ± 1.57 4.52 ± 1.38 6.69 ± 5.58 6.63 ± 5.62 4.16 ± 0.67
diabetes 35.68 ± 1.73 34.01 ± 3.00 29.53 ± 2.21 35.78 ± 1.85 35.73 ± 1.82 35.63 ± 1.72
german.numer 30.48 ± 0.88 30.48 ± 0.88 43.96 ± 1.30 30.48 ± 0.88 30.48 ± 0.88 30.48 ± 0.88
liver-disorders 38.58 ± 3.52 40.00 ± 4.47 39.56 ± 3.55 41.28 ± 1.79 40.58 ± 2.71 40.35 ± 3.17
sonar 20.26 ± 4.89 26.35 ± 11.35 21.54 ± 3.82 18.46 ± 2.67 20.58 ± 3.16 21.92 ± 7.30

λ = 10

Method EPSVM CKTA FSM 3-CV 5-CV 10-CV

australian 16.75 ± 2.37 44.81 ± 1.96 18.84 ± 1.88 21.86 ± 12.65 27.01 ± 16.24 17.45 ± 2.33
heart 16.59 ± 3.34 43.26 ± 2.00 26.07 ± 2.37 18.96 ± 3.65 18.52 ± 5.64 22.81 ± 11.86
ionosphere 16.11 ± 1.69 33.03 ± 4.75 29.94 ± 1.18 14.40 ± 2.81 14.63 ± 2.79 14.51 ± 2.73
breast-cancer 6.40 ± 4.74 12.43 ± 2.12 6.51 ± 1.49 4.57 ± 1.18 5.34 ± 1.98 4.28 ± 1.22
diabetes 35.42 ± 1.64 34.43 ± 2.49 29.53 ± 0.84 33.70 ± 1.61 34.11 ± 2.17 34.06 ± 3.47
german.numer 28.34 ± 1.45 29.88 ± 1.45 46.40 ± 1.11 28.80 ± 1.88 29.68 ± 1.88 29.64 ± 1.31
liver-disorders 44.88 ± 2.30 39.19 ± 4.94 38.37 ± 4.85 44.19 ± 4.48 42.44 ± 2.33 44.88 ± 2.30
sonar 17.58 ± 3.84 26.35 ± 8.26 19.81 ± 4.79 17.88 ± 3.16 17.50 ± 3.87 18.12 ± 5.28
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Figure 1: The average test errors using EPSVM with different δ. For each training set, each regularized
parameter λ, each δ, we choose the kernel by each kernel selection criterion on the training set, and evaluate
the test errors for the chosen parameters on testing set.

Table 3: The test mean square error (TMSE) with standard deviations (δ = 100). For each training set, each
λ, we choose the kernel by each kernel selection criterion on the training set, and evaluate the test error for
the chosen parameters on the testing set.

λ = 0.0001

Method EPKRR 3-CV 5-CV 10-CV LOO GCV

housing 23.90 ± 1.68 22.29 ± 2.10 22.50 ± 2.16 23.31 ± 1.38 23.31 ± 1.38 23.31 ± 1.38
mpg 10.26 ± 1.83 8.73 ± 0.68 8.28 ± 0.97 8.58 ± 0.94 8.81 ± 1.30 10.96 ± 1.08
pyrim 4.40e-3 ± 3.47e-4 8.48e-3 ± 3.37e-3 9.92e-3 ± 5.26e-3 1.24e-2 ± 6.54e-3 1.01e-2 ± 4.99e-3 2.72e-1 ± 1.68e-1
triazines 2.36e-2 ± 2.58e-2 2.17e-2 ± 7.02e-3 2.22e-2 ± 6.68e-3 2.22e-2 ± 6.80e-3 2.19e-2 ± 6.89e-3 2.09e-2 ± 5.79e-3
eunite2001 418 ± 52.34 422.72 ± 59.27 438.05 ± 46.20 447.78 ± 36.26 447.78 ± 36.26 447.78 ± 36.26
space-ga 1.58e-2 ± 3.22e-3 1.52e-2 ± 1.76e-3 1.48e-2 ± 1.05e-3 1.42e-2 ± 1.31e-3 1.42e-2 ± 1.31e-3 2.22e-2 ± 1.41e-3
cpusmall 37.61 ± 8.13 36.56 ± 17.90 35.54 ± 4.20 35.47 ± 15.30 35.41 ± 15.10 112.80 ± 9.85

λ = 0.001

housing 22.42 ± 21.92 23.29 ± 3.30 22.76 ± 2.59 20.34 ± 3.18 19.06 ± 0.68 28.24 ± 0.70
mpg 9.85 ± 3.49 10.20 ± 1.87 10.53 ± 1.23 9.52 ± 0.84 10.21 ± 0.91 13.91 ± 0.66
pyrim 6.33e-3 ± 1.41e-3 6.96e-3 ± 3.55e-3 6.34e-3 ± 2.65e-3 6.09e-3 ± 2.03e-3 7.43e-3 ± 2.01e-3 6.30e-2 ± 7.65e-2
triazines 2.22e-2 ± 1.15e-3 2.43e-2 ± 3.61e-3 2.36e-2 ± 2.93e-3 2.33e-2 ± 2.40e-3 2.51e-2 ± 4.90e-3 2.36e-2 ± 2.94e-3
eunite2001 700.49 ± 118.49 1.14e+3 ± 203.32 1.09e+3 ± 140.67 1.03e+3 ± 124.18 1.21e+3 ± 173.31 1.21e+3 ± 173.31
space-ga 1.75e-2 ± 3.90e-3 1.74e-2 ± 2.91e-3 1.71e-2 ± 2.79e-3 1.70e-2 ± 3.04e-3 1.68e-2 ± 2.97e-3 2.16e-2 ± 2.87e-3
cpusmall 42.09 ± 13.19 48.33 ± 13.01 41.72 ± 3.70 38.68 ± 8.75 38.68 ± 8.75 164.85 ± 24.84

λ = 0.01

housing 33.32 ± 6.40 35.56 ± 6.83 33.90 ± 7.14 33.37 ± 4.87 32.81 ± 5.39 47.00 ± 6.35
mpg 15.48 ± 2.27 16.17 ± 0.89 15.49 ± 1.64 17.81 ± 3.71 16.17 ± 2.36 21.80 ± 1.60
pyrim 1.23e-2 ± 4.00e-3 9.70e-3 ± 2.84e-3 1.03e-2 ± 4.63e-3 1.03e-2 ± 3.95e-3 8.94e-3 ± 2.03e-3 1.23e-2 ± 4.00e-3
triazines 2.78e-2 ± 3.52e-3 2.21e-2 ± 3.36e-3 2.35e-2 ± 4.51e-3 2.35e-2 ± 4.44e-3 2.21e-2 ± 3.36e-3 2.24e-2 ± 3.38e-3
eunite2001 2.17e+3 ± 99.41 1.81e+3 ± 146.48 1.83e+3 ± 132.19 1.83e+3 ± 154.29 1.83e+3 ± 151.97 2.17e+3 ± 99.41
space-ga 2.07e-2 ± 7.94e-4 2.16e-2 ± 2.36e-3 2.16e-2 ± 2.35e-3 2.32e-2 ± 3.11e-3 2.25e-2 ± 1.98e-3 2.24e-2 ± 1.77e-3
cpusmall 77.63 ± 10.45 79.51 ± 4.17 79.51 ± 4.17 79.51 ± 4.17 79.51 ± 4.17 204.56 ± 8.33

λ = 0.1

housing 75.36 ± 9.93 78.44 ± 23.11 88.96 ± 12.56 81.28 ± 19.66 81.28 ± 19.66 69.15 ± 11.36
mpg 52.95 ± 9.13 47.01 ± 18.01 48.45 ± 16.61 49.71 ± 15.68 55.47 ± 15.53 46.72 ± 9.23
pyrim 2.05e-2 ± 2.93e-3 1.97e-2 ± 4.05e-3 1.99e-2 ± 3.83e-3 1.98e-2 ± 3.48e-3 1.95e-2 ± 3.62e-3 2.05e-2 ± 2.93e-3
triazines 3.27e-2 ± 3.32e-3 4.35e-2 ± 1.02e-2 3.71e-2 ± 8.05e-3 3.63e-2 ± 5.99e-3 3.59e-2 ± 7.11e-3 3.27e-2 ± 3.32e-3
eunite2001 6.88e+3 ± 648.63 1.08e+4 ± 2.44e+3 9.85e+3 ± 639.14 1.044e+4 ± 2.83e+3 9.85e+3 ± 639.14 7.03e+3 ± 648.02
space-ga 4.15e-2 ± 3.65e-3 6.64e-2 ± 1.18e-2 7.07e-2 ± 5.10e-3 6.66e-2 ± 1.30e-2 7.07e-2 ± 5.10e-3 3.59e-2 ± 5.75e-3
cpusmall 219.33 ± 11.14 253.71 ± 14.46 269.47 ± 21.83 269.47 ± 21.83 269.47 ± 21.83 285.18 ± 18.65

λ = 1

housing 218.29 ± 19.64 282.97 ± 40.69 305.13 ± 49.95 282.92 ± 36.71 300.15 ± 22.14 256.51 ± 21.07
mpg 190.34 ± 14.83 272.45 ± 27.25 272.82 ± 44.78 272.45 ± 27.25 272.82 ± 44.78 249.64 ± 15.61
pyrim 1.31e-1 ± 1.25e-2 1.50e-1 ± 2.00e-2 1.57e-1 ± 1.71e-2 1.37e-1 ± 7.12e-3 1.52e-1 ± 2.12e-2 1.33e-1 ± 1.70e-2
triazines 1.61e-1 ± 4.63e-3 1.78e-1 ± 1.89e-2 1.67e-1 ± 1.60e-2 1.67e-1 ± 1.37e-2 1.67e-1 ± 1.37e-2 1.59e-1 ± 4.63e-3
eunite2001 1.43e+4 ± 2.23e+3 1.73e+4 ± 2.21e+3 1.73e+4 ± 2.21e+3 1.73e+4 ± 2.21e+3 1.73e+4 ± 2.21e+3 1.57e+4 ± 2.22e+3
space-ga 1.22e-1 ± 1.79e-3 2.03e-1 ± 1.87e-2 2.30e-1 ± 2.10e-2 2.39e-1 ± 2.03e-3 2.39e-1 ± 2.03e-3 1.94e-1 ± 1.90e-3
cpusmall 2.14e+3 ± 38.95 2.86e+3 ± 41.74 2.63e+3 ± 191.34 2.86e+3 ± 41.74 2.78e+3 ± 171.94 2.47e+3 ± 39.96
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Figure 2: The average test mean square errors using EPKRR with different δ . For each training set, each
regularized parameter λ, each δ, we choose the kernel by each kernel selection criterion on the training set,
and evaluate the test errors for the chosen parameters on testing set.

sets. In particular, for each λ, EPSVM outperforms FSM
on 6 (or more) out of 8 sets, and outperforms 3-CV, 5-CV
and 10-CV on 5 (or more) out of 8 sets. Thus it implicates
that choosing the kernel based on the eigenvalues perturba-
tion can guarantee good generalization. (b) The test errors
of EPSVM are more stable than these of other five criteria
when changing the value of λ, that is the fluctuation of the
test errors of the EPSVM are smaller than those of other
methods when changing the value of λ. This property may
bring some advantages in practical application.
In the next experiment, we will explore the effect of the

regularization coefficient δ for EPSVM. The average test er-
rors with different δ are given in Figure 1. We find that the
optimal δ belong to [25, 210] on most data sets. Therefore,
the range of δ should be set between 25 and 210.

5.2 Regression
We will compare EPKRR criterion with five popular re-

gression criteria: 3-CV, 5-CV, 10-CV, generalized cross-
validation (GCV) [19] and leave-one-out (LOO) 3. The learn-
ing algorithm we use here is the KRR.
The test mean square errors (TMSE) with standard de-

viations are reported in Table 3. In this experiment, the
parameter δ = 100. The results in Table 3 can be sum-
marized as follows: (a) EPKRR criterion is much better
than GCV on the nearly all data sets. In particular, for
λ ∈ {0.0001, 0.001, 0.01}, EPKRR outperforms GCV on 6
out of 7 sets, and also gives the close result on the remain-
ing 1 sets. (b) EPKRR criterion is comparable or better
than 3-CV, 5-CV, 10-CV and LOO on most data sets. So it
implicates that the EPKRR criterion is sound and effective.
Finally, we will explore the effect of the parameter δ for

EPKRR. The TMSE with different δ are given in Figure 2. It
is interesting to note that the TMSE does not quite depend
on δ. Thus, we can set δ to be a constant for simplicity
in practice (In Figure 2, we can find that the δ = 210 is a
reasonable choice).

3we only need to solve the KRR once to compute LOO [6].

6. CONCLUSION
In this paper, we introduce two new kernel selection crite-

ria for KRR and SVM based on the eigenvalues perturbation
of integral operator, which quantifies the difference between
the eigenvalues of kernel matrix and these of integral opera-
tor. These criteria are theoretically justified and show good
results in practice. We believe that our analysis opens new
perspectives on the application of the integral operator to
practical problems.

Future work will extend these criteria to other kernel based
methods (such as kernel-based logistic regression, least squares
Support Vector Machines), and use these criteria for multi-
ple kernel learning.
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Appendix.A Proof of Theorem 1
For each i ∈ {1, . . . ,m}, the removed training set is defined
as follows:

Si = {z1, . . . , zi−1, zi+1, . . . , zm}, z = (x, y).

In order to prove Theorem 1, we first prove the following
theorem:

Theorem 6. If the kernel function K is β eigenvalues
perturbation, then for the KRR, we have

∀S ∈ Zm,∀i ∈ {1, . . . ,m}, |fS(x)− fSi(x)| ≤ Cβ +Q,

where C = 2kM
λ

and Q = 2κ
m−1

.
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Proof. Denote vectors k, ki, y and yi as

k = (K(x,x1), . . . ,K(x,xm))T,

ki = (K(x,x1), . . . ,K(x,xi−1),K(x,xi+1), . . . ,K(x,xm))T,

y = (y1, . . . , ym)T,

yi = (y1, . . . , yi−1, yi+1, . . . , ym)T,

respectively. Denote the (m−1)× (m−1) kernel matrix Ki

with respect to the training set Si as

[Ki]j,k =
1

m− 1
K(xj ,xk),xj ,xk ∈ Si.

According to [18], we know that the solutions of the KRR
with respect to the training set S and Si can be respectively
written as

fS(x) =
1

m
kT(K + λI)−1y,

fSi(x) =
1

m− 1
kT
i (Ki + λIi)

−1yi,

where I and Ii are the m×m and (m−1)× (m−1) identity
matrices, respectively. For each i ∈ {1, . . . ,m}, denote the
m×m i-th removed kernel matrix as Ki with [Ki]jk =

1

m− 1
K(xj ,xk) if j and k ̸= i,

[Ki]jk = 0 if j or k = i,

it is easy to verify that

fSi(x) =
1

m− 1
kT
i (Ki + λIi)

−1yi

=
1

m− 1
kT
(
(Ki + λI)−1 −Ai

)
y,

where Ai = diag(0, . . . , 0, 1
λ
, 0, . . . , 0) is a diagonal matrix,

with the i-th diagonal element 1
λ
, others 0. Therefore, we

have

fS(x)− fSi(x)

=
kT

m
(K + λI)−1y − kT

m− 1
(Ki + λI)−1y

+
1

m− 1
kTAiy

=
kT

m

(
(K + λI)−1 − (Ki + λI)−1

)
y

− 1

m(m− 1)
kT(Ki + λI)−1y +

1

m− 1
kTAiy.

Since M ′−1 − M−1 = −M ′−1(M ′ − M)M−1 is valid for
any invertible matrices M , M ′, so, we have

(K + λI)−1 − (Ki + λI)−1

= −(K + λI)−1(K −Ki)(Ki + λI)−1.

Thus, we can obtain that∥∥∥((K + λI)−1 − (Ki + λI)−1
)
y
∥∥∥

≤ ∥(K + λI)−1∥∥K −Ki∥∥(Ki + λI)−1∥∥y∥

≤ ∥K −Ki∥∥y∥
λmin(K + λI)λmin(Ki + λI)

,

where λmin(K+λI) is the smallest eigenvalue of K+λI and
λmin(K

i + λI) the smallest eigenvalue of Ki + λI. Thus,

we can obtain that

|fS(x)− fSi(x)|

≤ ∥k∥
m

∥K −Ki∥∥y∥
λmin(K + λI)λmin(Ki + λI)

+
1

m(m− 1)

∥k∥∥y∥
λmin(Ki + λI)

+
|K(xi,xi)yi|
λ(m− 1)

.

Since the matrices K and Ki are positive semidefinite, so

λmin(K + λI) ≥ λ, λmin(K
i + λI) ≥ λ.

Note that ∥y∥ ≤
√
mM and ∥k∥ ≤

√
mκ, so we have

|fS(x)− fSi(x)| ≤ κM

λ2
∥K −Ki∥+ κM

(m− 1)λ
+

κM

(m− 1)λ
.

Denote the diagonal matrix Λ as

Λ = diag(λ1(LK), λ2(LK), . . . , λm(LK)).

Therefore, we have

∥K −Ki∥ ≤ ∥K −Λ∥+ ∥Ki −Λ∥.

By the definition of β-eigenvalues perturbation in Definition
1, it is easy to verify that

∥K −Λ∥ ≤ β, ∥Ki −Λ∥ ≤ β.

Thus, we can obtain that

∥K −Ki∥ ≤ 2β. (3)

Therefore,

|fS(x)− fSi(x)| ≤ 2κMβ

λ2
+

2κM

m− 1
.

In order to prove Theorem 1, we need to introduce the
pointwise hypothesis stability and a theorem given in [4].

Definition 2 (Pointwise Hypothesis Stability). An
algorithm A has pointwise hypothesis stability γ with respect
to the loss function ℓ if the following holds: ∀S ∈ Zm,∀i ∈
{1, . . . ,m},

ES [|ℓ(AS , zi)− ℓ(ASi , zi)|] ≤ γ.

Theorem 7 (Theorem 11 in [4]). For any learning al-
gorithm A with pointwise hypothesis stability γ with respect
to a loss function ℓ such that 0 ≤ ℓ(AS , z) ≤ Q, we have
with probability 1− δ,

R(S) ≤ Remp(S) +

√
Q2 + 12Qmγ

2mδ
.

Proof of Theorem 1. By Theorem 6, we have ∀S ∈
Zm,∀i ∈ {1, . . . ,m},

|fS(x)− fSi(x)| ≤ Cβ +Q.

Therefore, ∀z ∈ Z, we have

|ℓ(fS , z)− ℓ(fSi , z)|
= |(y − fS(x))

2 − (y − fSi(x))
2|

= |fS(xi)− fSi(x)| · |2y − fS(x) + fSi(x)|
≤ (Cβ +Q)(2M + Cβ +Q)

= 2M(Cβ +Q) + (Cβ +Q)2.

(4)
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By the definition of pointwise hypothesis stability (see Defi-
nition 2), it is easy to verity that the KRR with β eigenvalues
perturbation is

2M(Cβ +Q) + (Cβ +Q)2

pointwise hypothesis stability.
Since |y| ≤ M and fS(x) =

1
m
kT(K + λI)−1y, we have

|f(x)| ≤ 1

m

∥k∥∥y∥
λmin(K + λI)

≤ κM

λ
.

Note that

ℓ(fS , z) = (fS(x)− y)2

≤ 2f2
S(x) + 2|y|2

≤ 2κ2M2

λ2
+ 2M2.

(5)

Thus, by using Theorem 7, this assertion can be proved.

Appendix.B Proof of Theorem 2
We first give a definition of uniform stability and a theorem
introduced in [4].

Definition 3 (Uniform Stability). An algorithm A
has uniform stability γ with respect to the loss function ℓ if
the following holds: ∀S ∈ Zm,∀i ∈ {1, . . . ,m},

∥ℓ(fS , ·)− ℓ(fSi , ·)∥∞ ≤ γ.

Theorem 8 (Theorem 12 in [4]). Let A be an algo-
rithm with uniform stability γ with respect to a loss function
ℓ such that 0 ≤ ℓ(fS , z) ≤ L, for all z ∈ Z and all sets
S. Then, for any m ≥ 1, and any δ ∈ (0, 1), the following
bounds hold (separately) with probability at least 1 − δ over
the random draw of the sample S,

R(S) ≤ Remp(S) + 2γ + (4mγ + L)

√
ln 1/δ

2m
.

Proof of Theorem 2. By (4) and (5), we have

|ℓ(fS , z)− ℓ(fSi , z)| ≤ 2M(Cβ +Q) + (Cβ +Q)2 and

ℓ(fS , z) ≤
2κ2M2

λ2
+ 2M2.

By the definition of uniform stability (see in Definition 3),
it is easy to verity that the KRR with β eigenvalues pertur-
bation is

2M(Cβ +Q) + (Cβ +Q)2

uniform stability. Thus, based on Theorem 8, we can prove
this theorem.

Appendix.C Proof of Theorem 3
Lemma 1 (Proposition 2 in [13]). Let h′ denote the

hypothesis returned by SVMs when using the approximate
kernel matrix K′. Then, the following inequality holds for
all x ∈ X :

|h′(x)− h(x)| ≤
√
2λκ

3
4 ∥K′ −K∥

1
4
2

[
1 +

[
∥K′ −K∥2

4κ

] 1
4

]
.

To prove Theorem 3, we first give the following theorem:

Theorem 9. If the kernel function K is β eigenvalues
perturbation, then for the SVM,

|fS(x)− fSi(x)| ≤
√
2λκ

3
4 (2β)

1
4

[
1 +

[
β

2κ

] 1
4

]
.

Proof. Note that fSi(x) is the hypothesis returned by
SVMs using the i-th removed kernel matrix Ki, [Ki]jk =

1

m− 1
K(xj ,xk) if j and k ̸= i,

[Ki]jk = 0 if j or k = i.

By Lemma 1, it is easy to verify that for all x,

|fS(x)− fSi(x)| ≤
√
2κ

3
4 ∥Ki −K∥

1
4
2

[
1 +

[
∥Ki −K∥2

4κ

] 1
4

]
.

By (3), we know that

∥Ki −K∥ ≤ 2β.

Therefore, we can obtain that

|fS(x)− fSi(x)| ≤
√
2λκ

3
4 (2β)

1
4

[
1 +

[
β

2κ

] 1
4

]
.

Proof of Theorem 3. Since the hinge loss ℓ is 1-Lipschitz,
by Theorem 9, it is easy to verify that

|ℓ(fS(x), y)− ℓ(fSi(x), y)|

≤
√
2λκ

3
4 (2β)

1
4

[
1 +

[
β

2κ

] 1
4

]
.

(6)

Thus, it is easy to verity that the SVM with β eigenvalues

perturbation is κ
3
4 (2β)

1
4

[
1 +

[
β
2κ

] 1
4

]
pointwise hypothesis

stability. Since fS(x) =
∑m

j=1 αjK(xj ,x), αi ≤ λ
m
, there-

fore,

ℓ(fS(x), y) = |max(0, 1− yfS(x))|
≤ |1− yfS(x)| ≤ 1 + |y||fS(x)|
≤ 1 +Mλκ.

(7)

Thus, due to Theorem 7, the assertion is proved.

Appendix.D Proof of Theorem 4
Proof. By (6), we have

|ℓ(fS(x), y)− ℓ(fSi(x), y)|

≤
√
2λκ

3
4 (2β)

1
4

[
1 +

[
β

2κ

] 1
4

]
.

Thus, the SVM with β eigenvalues perturbation is

κ
3
4 (2β)

1
4

[
1 +

[
β

2κ

] 1
4

]

uniform stability. According to Eq.(7) and Theorem 8, we
can prove this theorem.
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