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Abstract

Kernel learning is a fundamental problem both in re-
cent research and application of kernel methods. Exist-
ing kernel learning methods commonly use some mea-
sures of generalization errors to learn the optimal ker-
nel in a convex (or conic) combination of prescribed
basic kernels. However, the generalization bounds de-
rived by these measures usually have slow convergence
rates, and the basic kernels are finite and should be spec-
ified in advance. In this paper, we propose a new ker-
nel learning method based on a novel measure of gen-
eralization error, called principal eigenvalue proportion
(PEP), which can learn the optimal kernel with sharp
generalization bounds over the convex hull of a possibly
infinite set of basic kernels. We first derive sharp gener-
alization bounds based on the PEP measure. Then we
design two kernel learning algorithms for finite kernels
and infinite kernels respectively, in which the derived
sharp generalization bounds are exploited to guarantee
faster convergence rates, moreover, basic kernels can be
learned automatically for infinite kernel learning instead
of being prescribed in advance. Theoretical analysis and
empirical results demonstrate that the proposed kernel
learning method outperforms the state-of-the-art kernel
learning methods.

Introduction

Kernel methods have been successfully applied in solving
various problems in machine learning community. The per-
formance of these methods strongly depends on the choice
of kernel functions (Micchelli and Pontil 2005). The earli-
est learning method of a kernel function is cross-validation,
which is computationally expensive and only applicable to
kernels with a small number of parameters. Minimizing the-
oretical estimate bounds of generalization error is an alterna-
tive to cross-validation (Liu, Jiang, and Liao 2014). To this
end, some measures are introduced: such as VC dimension
(Vapnik 2000), covering number (Zhang 2002), Rademacher
complexity (Bartlett and Mendelson 2002), radius-margin
(Vapnik 2000), maximal discrepancy (Anguita et al. 2012),
etc. Unfortunately, the generalization bounds derived by
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these measures usually have slow convergence rates with or-
der at most O

(
1√
n

)
, where n is the size of data set.

Instead of learning a single kernel, multiple kernel learn-
ing (MKL) follows a different route to learn a set of
combination coefficients of basic kernels (Lanckriet et al.
2004; Bach, Lanckriet, and Jordan 2004; Ong, Smola, and
Williamson 2005; Sonnenburg et al. 2006; Rakotomamonjy
et al. 2008; Kloft et al. 2009; 2011; Cortes, Mohri, and
Rostamizadeh 2010; Cortes, Kloft, and Mohri 2013; Liu,
Liao, and Hou 2011). Within this framework, the final ker-
nel is usually a convex (or conic) combination of finite ba-
sic kernels that should be specified in advance by users.
To improve the accuracy of MKL, some researchers stud-
ied the problem of learning a kernel in the convex hull of a
prescribed set of continuously parameterized basic kernels
(Micchelli and Pontil 2005; Argyriou, Micchelli, and Pon-
til 2005; Argyriou et al. 2006; Gehler and Nowozin 2008;
Ghiasi-Shirazi, Safabakhsh, and Shamsi 2010). This flexibil-
ity of the kernel class can translate into significant improve-
ments in terms of accuracy. However, the measures used for
the existing finite and infinite MKL algorithms are usually
radius-margin (SVM objective) or other related regulariza-
tion functionals, which usually have slow convergence rate.

In this paper, we introduce a novel measure of gener-
alization errors based on spectral analysis, called principal
eigenvalue proportion (PEP), and create a new kernel learn-
ing method over a possibly infinite set of basic kernels. We
first derive generalization bounds with convergence rates of
order O( log(n)n ) based on the PEP measure. By minimizing
the derived PEP-based sharp generalization bounds, we de-
sign two new kernel learning algorithms for finite kernel and
infinite kernels respectively: one can be formulated as a con-
vex optimization and the other one as a semi-infinite pro-
gram. For infinite case, the basic kernels are learned auto-
matically instead of being specified in advance. Experimen-
tal results on lots of benchmark data sets show that our pro-
posed method can significantly outperform the existing ker-
nel learning methods. Theoretical analysis and experimen-
tal results demonstrate that our PEP-based kernel learning
method is sound and effective.

Related Work

In this subsection, we introduce the related measures of gen-
eralization error and infinite kernel learning methods.
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Measures of Generalization Error In recent years, lo-
cal Rademacher complexities were used to derive sharper
generalization bounds. Koltchinskii and Panchenko (2000)
first applied the notion of the local Rademacher complex-
ity to obtain data dependent upper bounds using an iterative
method. Lugosi and Wegkamp (2004) established the oracle
inequalities using this notion and demonstrated its advan-
tages over those based on the complexity of the whole model
class. Bartlett, Bousquet, and Mendelson (2005) derived
generalization bounds based on a local and empirical version
of Rademacher complexity, and further presented some ap-
plications to classification and prediction with convex func-
tion classes. Koltchinskii (2006) proposed new bounds in
terms of the local Rademacher complexity, and applied these
bounds to develop model selection techniques in abstract
risk minimization problems. Srebro, Sridharan, and Tewari
(2010) established an excess risk bound for ERM with local
Rademacher complexity. Mendelson (2003) presented sharp
bounds on the local Rademacher complexity of the repro-
ducing kernel Hilbert space in terms of the eigenvalues of
integral operator associated with kernel function. Based on
the connection between local Rademacher complexity and
the tail eigenvalues of integral operator, Kloft and Blanchard
(2012) derived generalization bounds for MKL. Unfortu-
nately, the eigenvalues of integral operator of kernel function
are difficult to compute, so Cortes, Kloft, and Mohri (2013)
used the tail eigenvalues of kernel matrix, that is, the empiri-
cal version of the tail eigenvalues of integral operator, to de-
sign new kernel learning algorithms. However, the general-
ization bound based on the tail eigenvalues of kernel matrix
was not established. Moreover, for different kinds of kernel
functions (or the same kind but with different parameters),
the discrepancies of eigenvalues of different kernels may be
very large, hence the absolute value of the tail eigenvalues of
kernel function can not precisely reflect the goodness of dif-
ferent kernels. Liu and Liao (2015) first considered the rel-
ative value of eigenvalues for kernel methods. In this paper,
we consider another measure of the relative value of eigen-
values, that is, the proportion of the sum of the first t largest
principal eigenvalues to that of the all eigenvalues, for ker-
nel learning. Moreover, we derive sharper bounds with order
O( log(n)n ) using this relative value of eigenvalues of kernel
matrix.

Infinite Kernel Learning Lots of work focuses on the fi-
nite kernel learning, but few studies the infinite case. The
seminal work (Micchelli and Pontil 2005) generalized ker-
nel learning to convex combination of an infinite number
of kernels indexed by a compact set. Argyriou et al. (2006)
also proposed an efficient DC programming algorithm for
learning kernels. Gehler and Nowozin (2008) reformulated
the optimization problem of (Argyriou et al. 2006), and pro-
posed an infinite kernel learning framework for solving it
numerically. Ghiasi-Shirazi, Safabakhsh, and Shamsi (2010)
considered the problem of optimizing a kernel function over
the class of translation invariant kernels. Although using the
infinite kernels can improve the accuracy, the objective of
the existing infinite kernel learning methods are all SVM ob-
ject or other related regularization functionals, which have

slow convergence rates and usually only applicable for clas-
sification. In this paper, we propose an infinite kernel learn-
ing method, which use the PEP-based measure with fast con-
vergence rate and can be applicable both for classification
and regression.

Notations and Preliminaries

We consider supervised learning with a sample S =
{(xi, yi)}ni=1 of size n drawn i.i.d. from a fixed, but un-
known probability distribution P on X × Y , where X de-
notes the input space and Y denotes the output domain,
Y = {−1,+1} for classification, Y ⊆ R for regression.

Let K : X × X → R be a kernel function, and K =[
1
nK(xi,xj)

]n
i,j=1

be its corresponding kernel matrix. For
most of MKL algorithms, the kernel is learned over a convex
combination of finite basic kernels:

Kfinite =

{
m∑
i=1

diKθi , di ≥ 0,

m∑
i=1

di = 1

}
, (1)

where, Kθi , i = 1, . . . ,m, are the basic kernels. In (Mic-
chelli and Pontil 2005), they show that keeping the number
m of basic kernels fixed is an unnecessary restriction and
one can instead search over a possibly infinite set of basic
kernels to improve the accuracy. Therefore, in this paper, we
consider the general kernel classes:

Kinfinite =

{∫
Ω

Kθdp(θ) : p ∈ M(Ω)

}
, (2)

where Kθ is a kernel function associated with the parameter
θ ∈ Ω, Ω is a compact set and M(Ω) is the set of all prob-
ability measures on Ω. Note that Ω can be a continuously
parameterized set of basic kernels. For example, Ω ⊂ R+

and Kθ(x,x
′) = exp(−θ‖x − x′‖2), or Ω = [1, c] and

Kθ(x,x
′) = (1+xTx′)θ. If Ω = Nm, Kinfinite corresponds

to the Kfinite.
The generalization error (or risk)

R(f) :=

∫
X×Y

�(f(x), y)dP (x, y)

associated with a hypothesis f is defined through a loss
function �(f(x), y) : Y × Y → [0,M ], M is a con-
stant. In this paper, for classification, � is the hinge loss:
�(t, y) = max(0, 1 − yt); for regression, � is the ε-loss:
�(t, y) = max(0, |y − t| − ε). Since the probability distri-
bution P is unknown, R(f) cannot be explicitly computed,
thus we have to resort to its empirical estimator:

R̂(f) :=
1

n

n∑
i=1

�(f(xi), yi).

In the following, assume that κ = supx∈X Kθ(x,x) <
∞ for any θ ∈ Ω, and Kθ is differentiable w.r.t θ.

Generalization Bounds

In this section, we will introduce a novel measure of general-
ization errors, called principal eigenvalue proportion (PEP),
and use the measure to derive generalization bounds with
fast convergence rates.
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Principal Eigenvalue Proportion (PEP)

Definition 1 (Principal Eigenvalue Proportion). Let K be
a Mercer kernel and K(x,x′) =

∑∞
j=1 λj(K)φj(x)φj(x

′)
be its eigenvalue decomposition, where (λj(K))∞j=1 is the
sequence of eigenvalues of kernel function arranged in de-
scending order. Then, the t-principal eigenvalue proportion
(t-PEP) of K, t ∈ N+, is defined as

β(K, t) =

∑t
i=1 λi(K)∑∞
i=1 λi(K)

.

One can see that the t-PEP is the proportion of the sum of
the first t principal eigenvalues to that of all eigenvalues of a
kernel function. Note that β(K, t) ∈ [0, 1], and it is invariant
with respect to scaling of K, that is β(K, t) = β(cK, t)
for any c 	= 0. In the next subsection, we will show that
the larger the value β(K, t) is, the sharper the generalization
bound is. Thus, β(K, t) can be considered as a complexity
of K, and the larger value means the less complexity of K.
Definition 2 (Empirical PEP). Let K be a kernel function
and K =

[
1
nK(xi,xj)

]n
i,j=1

be its kernel matrix. Then, the
t-empirical PEP of K, t ∈ {1, . . . , n− 1}, is defined as

β̂(K, t) =
( t∑

i=1

λi(K)
)
/tr(K),

where λi(K) is the i-th eigenvalue of K in descending order,
and tr(K) is the trace of K.

The empirical PEP can considered as an empirical ver-
sion of PEP, which can also be used to yield generalization
bounds. The empirical PEP can be computed from empirical
data, so we can use it for practical application. Note that the
t-empirical PEP can be computed in O(tn2) time for each
kernel because it is sufficient to compute the t largest eigen-
values and the trace of K.

Generalization Bounds with PEP

Theorem 1. Let �(·, ·) be an L-Lipschitz loss function asso-
ciated with the first variable. For ∀ K ∈ Kinfinte, denote

Hinfinite
K = {〈w,ΦK(x)〉 : ‖w‖ ≤ Δ} ,

where Kinfinte is the infinite kernel class defined in Equation
(2). Then, ∀δ > 0, with probability at least 1 − δ over the
choice of a sample S = {(xi, y)}ni=1 drawn i.i.d according
to P , the following inequality holds: ∀ k > 1 and ∀f ∈
Hinfinite

K ,

R(f) ≤ k

k − 1
R̂(f) + c1

k
∫
Ω
(1− β(Kθ, t))dp(θ)

n
+ c2

k

n

where c1 = 20Δ2L2κ, c2 = (4 + 11M) log 1
δ + 20L2t.

According to the above theorem, one can see that, for any
t, larger value of

∫
Ω
β(Kθ, t)dp(θ) leads to sharper general-

ization bound. Moreover, if we set k = log(n), the conver-
gence rate of R(f)− k

k−1 R̂(f) is

O

(
k
(1− ∫

Ω
β(Kθ, t)dp(θ)

n
+

1

n

))
= O

(
log(n)

n

)
.

When n is not very small, we know that k
k−1 = log(n)

log(n)−1 ≈
1, so R(f)− k

k−1 R̂(f) ≈ R(f)− R̂(f).
Note that the hinge loss and ε-loss are L-Lipschitz loss

functions with L = 1, which shows that the assumption of
L-Lipschitz on loss function is reasonable.

Traditional Generalization Error Bounds Generaliza-
tion bounds based on Rademacher complexity are standard
(Bartlett and Mendelson 2002). For any δ > 0, f ∈ H, with
probability 1− δ,

R(f)− R̂(f) ≤ Rn(H)/2 +
√

ln(1/δ)/2n,

where Rn(H) is Rademacher averages of H. Rn(H) is in
the order of O( 1√

n
) for various kernel classes used in prac-

tice. Thus, this bound converges at rate O( 1√
n
) at most.

For radius-margin bound (Vapnik 2000) which is usually
adopted for MKL, with probability at least 1−δ, the follow-
ing inequality holds:

R(f)− R̂(f) ≤
√
c

(
R2 log2 n

ρ2
− log δ

)
/n.

This bound also converges at rate O
(√

log2 n
n

)
.

Bousquet and Elisseeff (2002) derived the stability-based
generalization bounds, and proved that if the algorithm has
uniform stability η, then with 1− δ,

R(f)− R̂(f) ≤ 2η + (4n · η +M)

√
log

(1
δ

)
/2n.

The order of convergence rate is at most O( 1√
n
).

The above theoretical analysis indicates that using the
PEP measure can obtain sharper bounds with fast conver-
gence rates, which also demonstrates the effectiveness of the
use of PEP to estimate generalization error.

If Ω is a finite set, from Theorem 1, it is easy to prove that:
Corollary 1. Assume that � is an L-Lipschitz loss function.
∀K ∈ Kfinite, denote

Hfinite
K = {〈w,ΦK(x)〉 : ‖w‖ ≤ Δ} ,

where Kfinite is the finite kernel class defined in (1). Then,
with probability 1− δ, the following inequality holds: ∀ k ≥
1 and f ∈ Hfinite

K ,

R(f) ≤ k

k − 1
R̂(f) + c1

k
∑m

i=1 di(1− β(Kθi , t))

n
+ c2

k

n
,

where c1 = 20Δ2L2κ, c2 = (4 + 11M) log 1
δ + 20kL2t.

This result is remarkable since the generalization bound
admits an explicit dependency on the combination coeffi-
cients di. It is a weighted average of 1−β(Kθi , t) with com-
bination weights di. Note that β(Kθi , t) can be considered
as a complexity of Kθi , the larger the value 1 − β(Kθi , t)
is, the more complex the Kθi is. This bound suggests that,
while some Kθi could have large complexities, they may
not be detrimental to generalization if the corresponding to-
tal combination weight is relatively small. Thus, to guar-
antee good generalization performance, it is reasonable to
learn a kernel function by minimizing R̂(f), ‖w‖2 and∑

i di(1 − β(Kθi , t)). Moreover, we can see that the con-
vergence rate can reach O( log(n)n ) when setting k = log(n).
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Generalization Bounds with Empirical PEP

Since it’s not easy to compute the value of PEP, we have to
use the empirical PEP for practical kernel learning. Fortu-
nately, we can also use it to derive sharp bound.
Theorem 2. Assume � is an L-Lipschitz loss function. Then,
with probability 1− δ, ∀ k ≥ 1 and f ∈ Hinfinite

K ,

R(f) ≤ k

k − 1
R̂(f) + c3

k
∫
Ω
(1− β̂(Kθ, t))dp(θ)

n
+ c4

k

n

where c3 = 40Δ2L2κ, c4 = (14 + 2M) log 1
δ + 40L2t.

One can see that the convergence rate can also reach
O( log(n)n ) when setting k = log(n), which indicates the ef-
fectiveness of empirical PEP to estimate the generalization
error.
Corollary 2. Assume � is an L-Lipschitz loss function. Then,
with 1− δ, ∀ k ≥ 1, f ∈ Hfinite

K , we have

R(f) ≤ k

k − 1
R̂(f) + c3

k
∑m

i=1 di(1− β̂(Kθi , t))

n
+ c4

k

n

where c3 = 40Δ2L2κ, c4 = (14 + 2M) log 1
δ + 40kL2t.

Kernel Learning Algorithms

In this section, we will exploit the empirical PEP to devise
kernel learning algorithms for finite and infinite kernels.

Finite Kernel Learning

This subsection studies the finite case. In this case, the finial
kernel Kd can be written as

Kd =
m∑
i=1

diKθi , di ≥ 0,
m∑
i=1

di = 1,

where Kθi , i = 1, . . . ,m, are the basic kernels. According
to the theoretical analysis of the above section, to guarantee
generalization performance, we can formulate the following
optimization:

min
d

P(d) = min
w,b

1

2
wTw + C

n∑
i=1

�(f(xi), yi)

− λ
m∑
i=1

diβ̂i(t),

s.t. d ≥ 0, ‖d‖1 = 1,

(3)

where β̂i(t) is the t-empirical PEP of Kθi , C and λ are two
trade off parameters to control the balance between the em-
pirical loss and empirical PEP, f(x) = 〈w,Φd(x)〉+ b with
Kd(x,x

′) = 〈Φd(x),Φd(x
′)〉.

To solve the optimization (3), we need to calculate the gra-
dient ∇P(d). This can be achieved by moving to the dual
formulation of P(d) given by (for classification and regres-
sion respectively)

DC(d) = max
α

1Tα− 1

2
αTYKdYα− λdTβ̂(t),

s.t. 1TYα = 0, 0 ≤ α ≤ C,

and

DR(d) = max
α

1TYα− 1

2
αTKdα− λdTβ̂(t)− ε1T|α|

s.t. 1Tα = 0, 0 ≤ |α| ≤ C,

where Kd =
∑m

i=1 diKθi is the kernel matrix for a given
d, Y = diag(y1, . . . , yn), and β̂(t) = (β̂1(t), . . . , β̂m(t))T.
Note that we can write P = E − λdTβ̂(t) and D =

W − λdTβ̂(t) with strong duality holding between E and
W . Thus, given any value of d, from Lemma 2 in (Chapelle
et al. 2002), we have

∂P

∂dk
=

∂D

∂dk
= −λβ̂k(t)− 1

2
α∗Hα∗,

where H = YKθkY for classification and H = Kθk for re-
gression, α∗ is the optimal solution of the dual optimization
D. Thus, all we need to take a gradient step is to obtain α∗. If
d is fixed, P or D are equivalent to their corresponding sin-
gle kernel with kernel matrix Kd. The PEP-based finite ker-
nel learning algorithm (FKL) is summarized in Algorithm 1.
The step size η is chosen based on the Armijo rule to guaran-
tee convergence and the projection step, for the constraints
d ≥ 0 and ‖d‖1 = 1, is as simple as d ← max(0,d),
d ← d

‖d‖1
. From the similar convergence analysis of (Rako-

tomamonjy et al. 2008), it is easy to verity that our FKL
algorithm is convergent.

Algorithm 1 Finite Kernel Learning (FKL)

1: Initialize: Basic kernels {Kθi}mi=1, d0i = 1
m , β̂i(t) =∑t

j=1 λj(Kθi)/tr(Kθi), i = 1, . . . ,m, s = 0.
2: repeat
3: Kds =

∑m
i=1 d

s
iKθi .

4: Use an SVM solver to solve the single kernel problem
with Kds and obtain the optimal solution αs.

5: ds+1
k ← dsk + η(λβ̂k(t) +

1
2α

sHαs), k = 1, . . . ,m.
6: ds+1 ← max(0,ds+1), ds+1 = ds+1/‖ds+1‖1.
7: s ← s+ 1.
8: until converged

The time complexity of FKL algorithm is O(tmn2 +
kn2 + kA), where m is size of basic kernels, n is the size
of data set, A is the time complexity of training a single ker-
nel problem, and k is the number of iterations of FKL. In
our experiments, we find that our FKL algorithm converges
very quickly.

Infinite Kernel Learning

In this subsection, we consider the infinite case. The objec-
tive we are interested in is the best possible finite kernel
learning object:

inf
Ωfinite⊂Ω

min
d,w,b

1

2
wTw + C

n∑
i=1

�(f(xi), yi)

− λdTβ̂(t),

s.t.
∑

θ∈Ωfinite

dθ = 1, dθ ≥ 0, ∀θ ∈ Ωfinite,

(4)
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where Ωfinite is a finite set and Ω is a continuous parameter-
ized set. The inner minimization problem is a finite kernel
learning problem, from (Sonnenburg, Rätsch, and Schäfer
2006; Sonnenburg et al. 2006), the dual problem of opti-
mization (4) can be written as

sup
Ωfinite⊂Ω

max
α,ξ

h(α)− ξ,

s.t. ξ ∈ R, 0 ≤ q(αi) ≤ C,

Q(θ;α) ≤ ξ, ∀θ ∈ Ωfinite,

(5)

for classification, h(α) = 1Tα, q(αi) = αi, Q(θ;α) =

λβ̂θ(t) +
1
2α

TYKθYα; for regression, h(α) = 1TYα −
ε1T|α|, q(αi) = |αi|, Q(θ;α) = λβ̂θ(t) + 1

2α
TKθα,

where β̂θ(t) =
∑t

j=1 λj(Kθ)/tr(Kθ). Note that if some
point (α∗, ξ∗) satisfies the last condition of the optimiza-
tion (5) for all θ ∈ Ω, then it also satisfies the condition
for all finite subsets thereof. Thus we omit the supermum
of optimization (5) and extend the program to the following
semi-infinite program:

max
α,ξ

h(α)− ξ,

s.t. ξ ∈ R, 0 ≤ q(αi) ≤ C

Q(θ;α) ≤ ξ, ∀θ ∈ Ω.

(6)

The dual form (6) of the problem suggests a delayed con-
straint generation approach to solve it. We start with a finite
constraint set Ω0 ⊂ Ω, and search for the optimal α∗. Then,
we find the new θ, θ ← argmaxθ∈Ω Q(θ,α∗), to add it into
the set of Ω0. The violated constraints are subsequently in-
cluded in Ωs ⊂ Ωs+1 ⊂ Ω. The algorithm of PEP-based
infinite kernel learning (IFKL) is summarized in Algorithm
2. One can see that the basic kernels are selected automati-
cally during the learning phase.

Algorithm 2 Infinite Kernel Learning (IFKL)
1: Initialize: Continuous parameterized set Ω, randomly

select θ0 ∈ Ω, Ω0 = ∅, s = 0, α0 = 0, ξ = −∞.
2: while Q(θs;αs) > ξ do
3: Ωs+1 = Ωs ∪ {θs}.
4: Using FKL (Algorithm 1) with Ωs+1 as basic kernels

to obtain the optimal solution αs+1.
5: ξ = maxθ∈Ωs+1 Q(θ,αs+1).
6: θs+1 ← argmaxθ∈Ω Q(θ,αs+1) {Sub-Problem,

solved in Algorithm 3}.
7: s ← s+ 1
8: end while

From Theorem 7.2 in (Hettich and Kortanek 1993), we
know that if the sub-problem (line 6 in Algorithm 2) can be
solved, Algorithm 2 stops after a finite number of iterations
or has at least one point of accumulation and each one of
these points solve optimization (6).

To run Algorithm 2, we should solve the sub-problem
(line 6 of Algorithm 2):

argmax
θ∈Ω

Q(θ;α) = λβ̂θ(t) +
1

2
αTHα, (7)

where H = YKθY for classification, H = Kθ for regres-
sion. We want to use the gradient-based algorithm to search
the maxima of Q(θ,α) over Ω. Thus, we should compute
the ∂β̂θ(t)

∂θ . However, β̂θ(t) is not differentiable.
In the following, we will show how to obtain an approxi-

mation solution of β̂θ(t). For any θs ∈ Ω, let μs
j be the j-th

eigenvector of Kθs , j = 1, . . . , t, then

β̂θ(t) =

∑t
j=1 λj(Kθ)

tr(Kθ)
≥

∑t
j=1 μ

s
j
TKθμ

s
j

tr(Kθ)
=: β̃θ(t, θ

s).

Thus, we can use argmaxθ∈Ω Q̃(θ;α) = λβ̃θ(t, θ
s) +

1
2α

THα to approximate the optimization (7). Note that

∂Q̃(θ,α)

∂θ
= λ

∂β̃θ(t, θ
s)

∂θ
+

1

2
αT ∂H

∂θ
α, (8)

where ∂β̃θ(t,θ
s)

∂θ =
∑t

j=1 μs
j
T ∂Kθ

∂θ μs
j

tr(Kθ)
− β̃θ(t,θ

s)
tr(Kθ)

∂tr(Kθ)
∂θ . Thus,

we can apply the gradient-based algorithm to solve the sub-
problem, which is summarized in Algorithm 3.

The time complexity of IFKL is O
(
k(tn2 + sn2 + A)

)
,

where k is the number of iterations of IFKL (Algorithm 2),
s is the number of iterations of Algorithm 3, and A the time
complexity of FKL (Algorithm 1). In our experiments, we
find that IFKL converges very quickly, and k is smaller than
10 on all data sets.

Algorithm 3 Sub-Problem
1: Initialize: Randomly select any θ0 ∈ Ω, s = 0.
2: repeat
3: Compute the eigenvectors μs

1, . . . ,μ
s
t of Kθs .

4: θs+1 ← θs + η
(
λ∂β̃θ(t,θ

s)
∂θ + 1

2α
T ∂H

∂θ α
)

(see Equa-
tion (8)).

5: s ← s+ 1.
6: until converged

Experiments

In this section, we will empirically compare our PEP-
based finite kernel learning (FKL) and infinite kernel learn-
ing (IFKL) with 9 popular finite and infinite kernel learn-
ing methods: centered-alignment based MKL with lin-
ear combination (CABMKL (linear)) and conic combina-
tion (CABMKL (conic)) (Cortes, Mohri, and Rostamizadeh
2010), SimpleMKL (Rakotomamonjy et al. 2008), gener-
alized MKL algorithm (GMKL) (Varma and Babu 2009),
nonlinear MKL algorithm with L1-norm (NLMKL (p = 1))
and L2-norm (NLMKL (p = 2)) (Cortes, Mohri, and Ros-
tamizadeh 2009), group Lasso-based MKL algorithms with
L1-norm (GLMKL (p = 1)) and L2-norm (GLMKL (p =
2)) (Kloft et al. 2011), and the state-of-the-art infinite kernel
learning (IKL) (Gehler and Nowozin 2008).

The data sets are 10 publicly available data sets from LIB-
SVM Data seen in Table 1. For finite kernels, we use the
Gaussian kernel K(x,x′) = exp

(−τ‖x− x′‖22
)

and poly-
nomial kernel K(x,x′) = (1+xTx′)d as our basic kernels,
τ ∈ {2i, i = −10,−9 . . . , 10} and d ∈ {1, 2, . . . , 20}. For
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Table 1: The average test accuracies of our IFKL and FKL, and other ones including: CABMKL (linear), CABMKL (conic),
SimpleMKL, GMKL, GLMKL (p = 1), GLMKL (p = 2), NLMKL (p = 1), NLMKL (p = 2) and IKL. We bold the numbers
of the best method, and underline the numbers of the other methods which are not significantly worse than the best one.

Datasets IFKL (ours) FKL (ours) CABMKL(linear) CABMKL(conic) SimpleMKL GMKL

australian 85.87±0.88 85.85±0.84 84.41±0.86 85.69±0.92 85.39±0.92 85.40±0.93
a2a 81.14±0.07 80.87±0.08 80.12±0.09 74.42±0.07 80.53±0.07 80.56±0.07

diabetes 76.25±0.99 76.19±0.94 75.19±1.40 75.55±0.89 75.71±0.85 75.71±0.85
german.numer 74.88±1.08 74.32±1.31 71.94±1.69 73.77±1.38 73.99±1.47 73.99±1.48

heart 82.27±2.92 82.15±5.50 82.02±3.85 82.05±5.47 81.53±3.31 82.12±3.81
ionosphere 93.67±1.07 93.66±1.02 91.57±1.49 91.59±1.43 91.53±1.26 91.52±1.24

liver-disorders 71.25±3.83 70.52±5.95 68.50±6.08 69.04±6.32 66.92±6.64 70.52±5.95
sonar 84.90±6.08 82.53±5.35 81.99±5.94 81.99±5.94 82.15±5.09 82.15±5.09
splice 85.48±0.76 85.46±0.82 84.20±0.90 84.20±0.90 84.31±0.85 84.55±0.81

svmguide3 82.96±0.71 82.83±0.72 80.76±0.78 80.34±0.77 82.81±0.71 82.81±0.71

Datasets NLMKL(p=1) NLMKL(p=2) GLMKL(p=1) GLMKL(p=2) IKL

australian 85.35±0.90 84.70±0.94 85.46±0.88 85.39±0.92 85.78±0.85
a2a 79.16±0.07 79.07±0.08 80.71±0.07 80.82±0.08 80.84±0.08

diabetes 74.57±0.80 73.94±1.00 75.81±0.84 75.77±0.78 76.02±1.00
german.numer 73.55±1.04 72.45±1.22 74.07±1.53 73.77±1.38 74.83±1.02

heart 81.51±3.00 80.17±5.45 82.10±3.63 82.07±3.69 82.12±3.81
ionosphere 91.53±1.66 91.65±1.54 91.50±1.37 91.08±0.98 93.63±1.05

liver-disorders 68.61±5.47 68.55±4.30 64.57±3.43 66.97±6.24 70.58±5.29
sonar 81.25±6.44 81.89±6.27 82.24±5.13 81.86±6.43 83.04±6.50
splice 83.45±1.14 83.69±0.99 85.40±0.79 53.29±1.05 85.46±0.82

svmguide3 82.19±0.71 82.53±0.68 82.75±0.72 80.23±1.29 82.83±0.72

infinite kernels. we use Gaussian kernel and polynomial ker-
nel with continuously parameterized sets, τ ∈ [2−10, 210]
and d ∈ [1, 20]. The regularization parameter C of all al-
gorithms is set to be 1. The other parameters for the com-
pared algorithms follow the same experimental setting in
their papers. The parameters λ ∈ {2i, i = −5, . . . , 5} and
t ∈ {2i, i = 1, . . . , 4} of our algorithms are determined by
3-fold cross-validation on training set. For each data set, we
run all methods 30 times with randomly selected 50% of all
data for training and the other 50% for testing. We use t-test
to describe the statistical discrepancy of different methods.
All statements of statistical significance in the remainder re-
fer to a 95% level of significance.

The average test accuracies are reported in Table 1, which
can be summarized as follows: 1) Our IFKL gives the best
results on all data sets and is significantly better than the
compared finite kernel selection methods (CABMKL, Sim-
pleMKL, GMKL and NLMKL) on nearly all data sets. Thus,
it implicates that learning the kernel with PEP over a pre-
scribed set of continuously parameterized basic kernels can
guarantee good generalization performance. 2) IFKL is sig-
nificantly better than the state-of-the-art infinite kernel learn-
ing (IKL) on 4 out of 10 data sets, and FKL is significantly
better than the compared finite kernel learning methods
(CABMKL, SimpleMKL, GMKL and NLMKL) on most
of data sets; 3) FKL gives comparable results to the IFKL;
4) The infinite kernel learning methods (IFKS and IKL) are
usually better than the compared finite kernel learning meth-
ods (CABMKL, SimpleMKL, GMKL and NLMKL), which

manifests the effectiveness of the use of infinite kernels. The
above results show that the use of PEP can significantly im-
prove the performance of kernel learning algorithms in both
finite and infinite kernels.

Conclusion

In this paper, we have created a new kernel learning method
based on the principal eigenvalue proportion (PEP) measure
of generalization errors, which can learn the optimal kernel
with fast convergence rate over a convex hull of possibly in-
finite basic kernels. Using the PEP measure, we have derived
sharper generalization bounds with fast convergence rates,
which improve the results of generalization bounds for most
of kernel learning algorithms. Exploiting the derived gen-
eralization bounds, we have designed two effective kernel
learning algorithms with statistical guarantees and fast con-
vergence rates, which outperform the state-of-the-art kernel
learning methods.
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