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Abstract

The study on generalization performance of ranking
algorithms is one of the fundamental issues in rank-
ing learning theory. Although several generalization
bounds have been proposed based on different mea-
sures, the convergence rates of the existing bounds
are usually at most O

(
1√
n

)
, where n is the size of

data set. In this paper, we derive novel generalization
bounds for the regularized ranking in reproducing ker-
nel Hilbert space via integral operator of kernel func-
tion. We prove that the rates of our bounds are much
faster than O

(
1√
n

)
. Specifically, we first introduce a no-

tion of local Rademacher complexity for ranking, called
local ranking Rademacher complexity, which is used to
measure the complexity of the space of loss functions of
the ranking. Then, we use the local ranking Rademacher
complexity to obtain a basic generalization bound. Fi-
nally, we establish the relationship between the local
Rademacher complexity and the eigenvalues of integral
operator, and further derive sharp generalization bounds
of faster convergence rate.

Introduction

Ranking is an important problem in various applications,
such as information retrieval, natural language processing,
computational biology and social sciences (Freun et al.
2003; Cortes, Mohri, and Rastogi 2007). In ranking, one
learns a real-valued function that assigns scores to instances,
but the scores themselves do not matter; instead, what is im-
portant is the relative ranking of instances induced by those
scores. From different perspectives, various ranking algo-
rithms have been proposed including Ranking SVM (Her-
brich, Graepel, and Obermayer 1999), PRanking(Crammer
and Singer 2001), RankNet (Burges et al. 2005; Burges,
Ragno, and Le 2007), RankBoost (Freun et al. 2003), P -
norm push ranking (Rudin 2009), subset ranking (Cossock
and Zhang 2008), ListNet (Cao et al. 2007), ListMLE (Xia
et al. 2008), kernel-based regularized ranking (Agarwal and
Niyogi 2009), etc.

To understand existing ranking algorithms and guide the
development of new ones, people have to investigate the
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Figure 1: Our eigenvalue-based bound in Theorem 4, the
standard stability-based bound (Agarwal and Niyogi 2009)
and Rademacher bound (Clémençon, Lugosi, and Vayatis
2005), and U -process-based bound (Rejchel 2012).

generalization ability of ranking algorithms. A sharper gen-
eralization bound usually implies more consistent perfor-
mances on the training set and the test set. In recent years,
some generalization bounds have been developed to esti-
mate the ability of ranking algorithms based on different
measures, such as VC-dimension (Freun et al. 2003), cover
number (Rudin and Schapire 2009; Rejchel 2012), algo-
rithmic stability (Agarwal and Niyogi 2009), Rademacher
complexity (Clémençon, Lugosi, and Vayatis 2005; 2008;
Lan et al. 2008; 2009; Chen, Liu, and Ma 2010), etc. Al-
though there have been several recent advances in the study-
ing of generalization bounds of ranking algorithms, the or-
ders of the convergence rates of the existing generalization
bounds are usually at most O

(
1√
n

)
.

In this paper, we consider the regularized ranking algo-
rithms in reproducing kernel Hilbert space (RKHS), and de-
rive sharper generalization bounds with convergence rates
that are much faster than O

(
1√
n

)
. Specifically, we first in-

troduce a notion of local ranking Rademacher complexity
for ranking, which is an extension of the traditional lo-
cal Rademacher complexity for classification or regression
problems. We then use this notion as a tool to perform gen-
eralization analysis for ranking, and derive sharper general-
ization bounds with the eigenvalues of the integral operator
associated with kernel function. We finally conduct exper-
iments to empirically analyze the performance of our pro-
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posed bounds. Our bound, the standard algorithmic stabil-
ity bound (Agarwal and Niyogi 2009), Rademacher bound
(Clémençon, Lugosi, and Vayatis 2005) and the state-of-the-
art U -process bound (Rejchel 2012) are plotted in Figure 1
(see Section 4 in detail). The plot shows that our bound is
sharper than the stability bound, Rademacher bound and U -
process bound, which demonstrates the effectiveness of us-
ing the eigenvalues of integral operator to estimate the gen-
eralization error for ranking.

To our knowledge, this is the first attempt to use the no-
tion of local Rademacher complexity and the eigenvalues of
integral operator to derive generalization error bounds for
ranking. Major contributions of the paper include:

1) A novel extension version of local Rademacher complex-
ity of the space of loss functions for ranking is proposed.

2) The proof of theorem that gives the generalization error
bound on the basis of the local ranking Rademacher com-
plexity is given.

3) The relationship between the local ranking Rademacher
complexity and the eigenvalues of integral operator is es-
tablished.

4) The generalization bounds of fast convergence rates based
on the eigenvalues of integral operator are derived.

Related Work

In this subsection, we introduce the related work about the
generalization bounds of raking algorithms and the local
Rademacher complexity.

Generalization Bounds of Ranking Algorithms Freund
et al. (2003) gave a generalization bound of RankBoost in
the bipartite setting. Their bound was expressed in terms of
the VC-dimension of a class of binary classification func-
tions. Agarwal and Niyogi (2005) used a different tool,
namely that of algorithmic stability (Bousquet and Elis-
seeff 2002), to obtain generalization bounds for bipartite
ranking algorithms. Agarwal and Niyogi (2009) general-
ized the above results for general ranking problems. Cortes,
Mohri, and Rastogi (2007) considered a different setting
of the ranking problem and derived stability-based gener-
alization bounds for algorithms in this setting. Rudin and
Schapire (2009) derived a margin-based bound in terms
of the covering numbers, and described a new algorithm
based on the derived bound. Lan et al. (2008) explored the
query-level generalization ability of ranking algorithms us-
ing query-level stability. Lan et al. (2009) generalized the
above work, and gave a generalization bound for the list-
wise ranking algorithms based on the basis of Rademacher
complexity of the class of compound functions. Chen, Liu,
and Ma (2010) proposed a novel theoretical framework to
perform generalization analysis of the listwise ranking algo-
rithms under the assumption of two-layer sampling. Rejchel
(2012) investigated the generalization properties of convex
risk minimizers based on the empirical and U -process the-
ory (Pakes and Pollard 1989), and proposed a generalization
bound for the regularized ranking algorithms with Gaussian
kernel on the hinge loss. Although various generalization
bounds have been developed based on different measures,

the convergence rates of the existing bounds are usually at
most O

(
1√
n

)
. In this paper, based on the notion of local

Rademacher complexity and eigenvalues of integral oper-
ator, we will derive bounds with rates that are much faster
than O

(
1√
n

)
.

Local Rademacher Complexity One of the useful data-
dependent complexity measures used in the generalization
analysis for traditional classification or regression prob-
lems is the notion of Rademacher complexity (Bartlett and
Mendelson 2002; Koltchinskii and Panchenko 2002). How-
ever, it provides global estimates of the complexity of the
function class, that is, it does not reflect the fact that the
algorithm will likely pick functions that have a small er-
ror. In recent years, several authors have applied local
Rademacher complexity to obtain better generalization error
bounds for traditional classification or regression (Bartlett,
Bousquet, and Mendelson 2005; Koltchinskii 2006; Liu and
Liao 2015). The local Rademacher complexity considers
Rademacher averages of a smaller subset of the hypothe-
sis set, so it is always smaller than the corresponding global
one. Unfortunately, the empirical loss of ranking is usually a
non-sum-of-i.i.d. pairwise loss, therefore the techniques for
proving tight generalization error bounds for traditional clas-
sification or regression can not be applied to ranking. To ad-
dress this problem, in this paper, we define a new version of
local Rademacher complexity for ranking, and use the per-
mutations to convert the non-sum-of-i.i.d. pairwise loss to a
sum-of-i.i.d. form for deriving tight bounds.

The rest of the paper is organized as follows. In Section 2,
we introduce some notations and preliminaries. In Section
3, we give the definition of local ranking Rademacher com-
plexity, and then use it to perform generalization analysis. In
Section 4, we bound the local Rademacher complexity using
the eigenvalues of integral operator, and further derive tight
generalization error bounds of fast convergence rate. We end
in Section 5 with conclusion. Due to limited space, we only
give the sketch of proofs in main body, the details are given
in supplementary material.

Notations and Preliminaries

Let S = {zi = (xi, yi)}ni=1 be a sample set of size n drawn
identically and independently from a fixed, but unknown
probability distribution P on Z = X × Y , where X de-
notes the input space and Y ⊂ R denotes the output domain.
In the problem of ranking, the goal is to learn a real-valued
function f : X → R that induces a ranking or ordering over
an instance space. Let � : YX × Z × Z → R

+ ∪ {0} be a
loss function that assigns to each function f and z, z′ ∈ Z
to a non-negative real number �(f, z, z′), interpreted as the
penalty or loss of f in its relative ranking of x and x′ given
corresponding labels y and y′.

Let K : X×X → R be a Mercer kernel, that is, K is sym-
metric and for any finite set of instances, its corresponding
kernel matrix is positive semidefinite (Aronszajn 1950). The
reproducing kernel Hilbert space (RKHS) H associated with
K is defined to be the completion of the linear span of the
set of functions {K(·,x) : x ∈ X} with the inner product
denoted as 〈·, ·〉K satisfying 〈K(·,x),K(·,x)〉 = K(x,x′).
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In this paper, we study the regularized ranking algorithms in
RKHS:

fS = argmin
f∈H

1

n(n− 1)

∑
i�=j

�(f, zi, zj) + λ‖f‖2K ,

where H is the RKHS with respect to K, λ is the regular-
ization parameter, and � is a loss function. Common loss in-
cluding:

• 0-1 loss

�(f, z, z′) = I(sgn(y − y′) · (f(x)− f(x′)) < 0),

I(·) is the indicator function, sgn(u) = 1 if u > 0,
sgn(u) = 0 if u = 0, otherwise −1.

• Hinge loss

�(f, z, z′) = (|y − y′| − (f(x)− f(x′)) · sgn(y − y′))+ .

• Least squares loss

�(f, z, z′) =
(
|y − y′| − sgn(y − y′) · (f(x)− f(x′))

)2

.

• γ loss

�(f, z, z′) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|y − y′| if t ≤ 0,

|y − y′| − t

γ
if 0 <

t

γ
< |y − y′|,

0 if
t

γ
≥ |y − y′|,

where t = (f(x)− f(x′))sgn(y − y′).

The quality of a ranking function f can be measured by
its generalization error,

L(f) = Ez,z′ [�(f, z, z′)] ,

where, the expectation is taken over the random choice of
the samples z, z′ according to P . Since the distribution P
is unknown, the generalization error of a ranking function f
must be estimated from an empirically observable quantity,
and its empirical ranking error is defined as follows:

L̂n(f) =
1

n(n− 1)

∑
i�=j

�(f, zi, zj).

In the following, we assume that κ = supx∈X K(x,x) <
∞, and � : YX ×Z ×Z → [0,M ], M > 0 is a constant.

A Basic Generalization Bound

In this section, we will first introduce a novel notion of lo-
cal Rademacher complexity for ranking, and then use it to
derive a basic generalization bound.

The Rademacher complexity is usually defined over the
space of functions H. In this paper, we generalize this no-
tion to a more general ranking learning framework. For this
purpose, we switch from the space of functions H to the
space of loss functions.

Definition 1. Given a space of functions H with its associ-
ated loss function �, the space of loss functions L is defined
as:

L = {�f := �(f, ·, ·)|f ∈ H} , (1)
where �f : Z × Z → [0,M ]

�f (z, z
′) = �(f, z, z′).

Then, the generalization error and the empirical error can
be rewritten in terms of the space of loss functions:

L(f) ≡ L(�f ) = Ez,z′ [�(f, z, z′)] ,

L̂n(f) ≡ L̂n(�f ) =
1

n(n− 1)

∑
i�=j

�(f, zi, zj).

Since we do not know in advance which f ∈ H will be
chosen during the learning phase, in order to estimate L(�f ),
we have to study the behavior of the difference between the
generalization error and the empirical error. To this end, we
introduce the notion of uniform deviation of L, denoted as

Ûn(L) = sup
�f∈L

{
L(�f )− L̂n(�f )

}
. (2)

Note that
{
L(�f )− L̂n(�f )

}
�f∈L

≤ Ûn(L), so we have

L(�f ) ≤ L̂n(�f ) + Ûn(L), ∀�f ∈ L.
Ûn(L) is not computable, but we can bound its value via the
ranking Rademacher complexity defined as follows:
Definition 2. Assume L is a space of loss functions
as defined in Definition 1. Then the empirical ranking
Rademacher complexity of L is:

R̂n(L) = Eσ

⎡
⎣ sup
�f∈L

∣∣∣∣∣∣
2

�n/2�
�n/2�∑
i=1

σi�(f, zi, z�n/2�+i)

∣∣∣∣∣∣
⎤
⎦ ,

where σ1, σ2, . . . , σ�n/2� is an i.i.d. family of Rademacher
variables taking values -1 and 1 with equal probability in-
dependent of the sample S = (z1, . . . , zn), and �n/2� is the
largest integer no greater than n

2 . The ranking Rademacher
complexity of L is:

Rn(L) = ESR̂n(L).
One can see that the ranking Rademacher complexity is

defined on the space of loss functions of ranking, which is an
extension of the traditional Rademacher complexity defined
on H. Thus, we can use it as a tool to perform generalization
analysis of ranking.

Although we can use the ranking Rademacher complex-
ity to bound generalization error for ranking, it does not take
into consideration the fact that, typically, the hypotheses se-
lected by a learning algorithm have a better performance
than in the worst case and belong to a more favorable sub-
family of the set of all hypotheses (Cortes, Kloft, and Mohri
2013). Therefore, to derive tight generalization bound, we
consider the use of the local Rademacher complexity in this
paper. To this end, let Lr be a star-shaped space of L with
respect to r > 0,

Lr =
{
a�f

∣∣∣a ∈ [0, 1], �f ∈ L, L[(a�f )2] ≤ r
}
,

where L(�2f ) = Ez,z′
[
�2(f, z, z′)

]
.
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Definition 3. For any r > 0, the local ranking Rademacher
complexity of L is defined as

Rn(Lr) := Rn

({
a�
∣∣∣a ∈ [0, 1], � ∈ L, L[(a�)2] ≤ r

})
.

The key idea to obtain sharp generalization error bound
is to choose a much smaller class Lr ⊆ L with as small a
variance as possible, while requiring that the fS is still in
{f |f ∈ H, �f ∈ Lr}.

The generalization error with ranking local Rademacher
complexity is given as follows:
Theorem 1. Assume that r∗ is the fixed point of Rn(Lr),
that is, r∗ is the solution of Rn(Lr) = r with respect to r.

Then, ∀k > max
(
1,

√
2

2M

)
, with probability 1− δ:

L(fS) ≤ max

{
k

k − 1
L̂n(fS), L̂n(fS) + c1r

∗ +
c2

n− 1

}
,

where c1 = 8kM and c2 = 8k ln δ + 6.

Proof. We sketch the proof here. We first prove that the gen-
eralization error can be bounded through an assumption over
the uniform deviation: if Ûn(L̄) ≤ r

Mk , then ∀f ∈ H,

L(f) ≤ max

{(
k

k − 1
L̂n(f)

)
,
(
L̂n(f) +

r

Mk

)}
.

where L̄ =
{

r
max(L(�2f ),r)

�f

∣∣∣�f ∈ L
}

. Then, we propose

the upper bounded of Ûn(L̄) with Rn(Lr): Ûn(L̄) ≤
2Rn(Lr) +

√
2r ln δ
�n/2� + 4 ln δ

3�n/2� . The above results show
that we can choose a suitable r to satisfy the assumption
Ûn(L̄) ≤ r

Mk to accomplish this theorem. Finally, we show
that the suitable r can be chosen with the fixed point of
Rn(Lr).

The Rn(Lr) is a sub-root function (see Lemma 3 in the
supplementary material), so the fixed point r∗ of Rn(Lr) is
existing and unique.
Remark 1. The generalization error bounds with the local
Rademacher complexity for traditional classification or re-
gression problems have been given in (Bartlett, Bousquet,
and Mendelson 2005; Koltchinskii 2006). However, since the
empirical ranking error L̂n(f) = 1

n(n−1)

∑
i�=j �(f, zi, zj)

is a non-sum-of-i.i.d. pairwise loss, the techniques for
proving the generalization bounds in (Bartlett, Bousquet,
and Mendelson 2005; Koltchinskii 2006) for classification
and regression can not be applied to ranking. To address
this problem, inspired by (Clémençon, Lugosi, and Vayatis
2005), we introduce permutations to convert the non-sum-of-
i.i.d. pairwise loss to a sum-of-i.i.d. form. Thus, Theorem 1 is
a non-trivial extension of (Bartlett, Bousquet, and Mendel-
son 2005; Koltchinskii 2006) for ranking.

Tight Generalization Bounds

In the section, we first establish the relationship between the
local ranking Rademacher complexity and the eigenvalues
of integral operator of associated with kernel function, and

further derive the sharp generalization bounds with fast con-
vergence rates.

Note that K is a Mercer kernel, thus K can be written
as K(x,x′) =

∑∞
i=1 λiψi(x)ψi(x

′), where (λi)
∞
i=1 and

(ψi)
∞
i=1 are the sequence of eigenvalues and eigenfunctions

of the integral operator LK : H → H
LK(f) =

∫
X
K(·,x′)f(x′)dPX (x′), (3)

where PX is the marginal distribution of P on X .
We say a loss function � is an L-Lipschitz loss function, if

the following inequality holds: ∀f1, f2 ∈ H and ∀z, z′ ∈ Z ,
|�(f1, z, z′)− �(f2, z, z

′)|
≤ L (|f1(x)− f2(x)|+ |f1(x′)− f2(x

′)|) .
Note that both the popular hinge loss and 0-1 loss are 1-
lipschitz, the γ loss is 1

γ -Lipschitz. Moreover, the square loss
ranking is (2F+ 4κF√

λ
)-Lipschitz (Agarwal and Niyogi 2009)

if ∀y ∈ Y, |y| ≤ F . Therefore, it is natural to assume that �
is an L-Lipschitz loss function.

The relationship between the eigenvalues of integral op-
erator and Rn(Lr) is given as follows:
Theorem 2. If the loss � is an L-Lipschitz loss function, then

Rn(Lr) ≤ 2L

√√√√ 2

�n/2� min
θ≥0

(
r

4L2
θ +

∑
i>θ

λi

)
.

Proof. We sketch the proof here. By exploiting the con-
traction inequality (Theorem 2.2 of Koltchinskii (2011)),
we first establish the relationship between the local rank-
ing Rademacher complexity and the traditional local
Rademacher complexity:

Rn(Lr) ≤ 2LED,σ

⎡
⎣ sup
f∈HD

∣∣∣∣∣∣
2

�n/2�
�n/2�∑
i=1

σif(xi)

∣∣∣∣∣∣
⎤
⎦ ,

where HD =
{
f |f ∈ H, ‖f‖2 ≤ r

4L2

}
, and D =

{zi, . . . , z�n/2�} ∈ Z�n/2�. According to Theorem 6.5 of
(Bartlett, Bousquet, and Mendelson 2005), we can bound
the traditional local Rademacher complexity with eigenval-
ues of integral operator, which finishes the proof.

According to the above theorem, we know that we can use
the tail eigenvalues

∑
i>θ λi to bound Rn(Lr). Therefore,

we can derive tight generalization bounds under some mild
assumptions over the eigenvalues of integral operator.
Theorem 3. If the loss � is an L-Lipschitz loss function, and
kernel function K satisfies the assumption of algebraically
decreasing eigenvalues, that is

∃α > 1, c > 0 : λi ≤ ci−α,

where (λi)
∞
i=1 are the sequence of eigenvalues (arranged in

descending order) of integral operator LK defined in (3).
Then, with probability 1− δ, ∀k ≥ max(1,

√
2

2M ), L(fS)

≤ max

{
L̂n(fS) + c1k

[
1

n− 1

] α
α+1

+
c2k + 6

n− 1
,
kL̂n(fS)

k − 1

}
,

where c1 = 32Mc
α−1 (4L2)α and c2 = 8 ln δ.
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Proof. We sketch the proof here. Based on the assumption
of algebraically decreasing eigenvalues, we first prove that

minθ

(
θr
4L2 +

∑
j>θ λj

)
≤ 2c

α−1

(
r

4L2

)α−1
α . Substituting

the above inequality into Theorem 2, we then obtain that

Rn(Lr) ≤ 2L

√
1

n−1
4c

α−1

(
r

4L2

)α−1
α . Finally, we estimate

the fixed point of r∗ of Rn(Lr) to complete the proof.

The assumption of algebraically decreasing eigenvalues
of kernel function is a common assumption, for example,
met for the popular shift invariant kernel, finite rank kernels
and convolution kernels (Williamson, Smola, and Scholkopf
2001).

Note that fS = argminf∈H L̂n(f) + λ‖f‖2K , so
L̂n(fS) is dependent with n, which is usually assumed that
L̂n(fS) = O(n−β), β ≥ 1

2 (Eberts and Steinwart 2011;
Steinwart, Hush, and Scovel 2009). Thus, under this as-
sumption, by Theorem 3, we have

L(fS)− L̂n(fS) ≤ n−β

k − 1
+ c1k

[ 1

n− 1

] α
α+1 +

c2k + 6

n− 1

= O
(n−β

k
+ n− α

α+1 +
k

n

)
.

If we set k = Ω(
√
n−βn

α
2(α+1) ), we can obtain that

L(fS)− L̂n(fS) = O(n− α
2(α+1)

− β
2 + n−β− α+2

2(α+1) )

Note that α > 1, β ≥ 1
2 , so the rate is faster than O( 1√

n
).

If a slight stronger assumption on eigenvalues of integral
operator is satisfied, the much faster rate of generalization
bound can be obtained:

Theorem 4. If the loss � is an L-Lipschitz loss function,
and kernel function K satisfies the assumption of factorial
decreasing eigenvalues, that is

∃c > 0, λi ≤ c
1

i!
.

Then, with probability at least 1− δ, ∀k ≥ max(1,
√
2

2M ),

L(fS) ≤ max

{
k

k − 1
L̂n(fS), L̂n(fS) +

c1k + 6

n− 1

}
,

where c1 = 32Mθ∗ + 8 ln δ and θ∗ is the solution of θ
4L2 =

c exp(−θ) with respect to θ.

Proof. The proof is similar with that of Theorem 3.

Although the assumption of the factorial decreasing
eigenvalues is stronger than that of algebraically decreas-
ing, it is also a mild condition met for the popular Gaus-
sian kernel and Laplace kernel (Shi, Belkin, and Yu 2008;
Cortes, Kloft, and Mohri 2013).

From Theorem 4, we have L(fS) − L̂n(fS) ≤ L̂n(fS)
k−1 +

c1k+6
n−1 . Thus, L(fS) − L̂n(fS) = O

(
L̂n(fS)

k + k
n

)
. Un-

der the mild assumption that L̂n(fS) = O(n−β), β ≥ 1
2

(Eberts and Steinwart 2011; Steinwart, Hush, and Scovel

2009), when setting k = Ω(

√
nL̂n(fS)), we can obtain that

L(fS)− L̂n(fS) = O
(√

L̂n(fS)/n
)
= O

(
n− β+1

2

)
.

Note that β ≥ 1
2 , thus the order is faster than O

(
1

n3/4

)
,

which is much faster than O
(

1√
n

)
. When β ≥ 1, the order

is even faster than O
(
1
n

)
.

Comparison with Related Work

Generalization bounds based on the notion of algorithmic
stability and Rademacher complexity are standard. (Agarwal
and Niyogi 2009) showed that the regularized ranking algo-
rithms in RKHS had good stability properties, and further
derived a stability-based generalization bound for the regu-
larized ranking algorithms: with probability at least 1− δ,

L(fS) ≤ L̂n(fS) +
32κL

λn
+

(
16κL

λ
+M

)√
2 log(1/δ)

n
.

The convergence rate of the stability-based generalization
bound is O

(
1√
n

)
.

In (Clémençon, Lugosi, and Vayatis 2008; 2005), they
used the Rademacher average for deriving generalization
bounds:

L(fS)− L̂n(fS) ≤ MRn(L) +
√

M2 log(1/δ)

n− 1
,

where Rn(L) is Rademacher average over L, which is in
the order O( 1√

n
) for various kernel classes in practice. Thus,

this bound converges with rate O
(

1√
n

)
. In (Lan et al. 2008;

2009; Chen, Liu, and Ma 2010), they used the Rademacher
average for deriving the “query-level generalization bounds”
for the listwise ranking algorithms. These generalization
bounds are established to study the generalization perfor-
mance of listwise ranking algorithms, but not suitable for
the regularized ranking algorithms in RKHS. Moreover, the
convergence rate is also O

(
1√
n

)
.

Based on the VC dimension, (Freun et al. 2003) gave
a generalization bound for RankBoost on the pairwise 0-1
loss: Assuming the function class H has a finite VC dimen-
sion, and the size of the positive and negative samples are
equal, then with probability 1− δ:

L(fS) ≤ L̂n(fS) + 4

√
V ′(log 2n

V ′ + 1) + log 18
δ

n
,

where V ′ = 2(V +1)(T+1) log(e(T+1)) (refer to (Freun et
al. 2003) for detail). One can see that if H has a finite VC di-
mension, the convergence rate can reach O

(
1√
n

)
. However,

for the popular kernel function, such as Gaussian kernel, the
VC dimension of its RKHS is infinite. Moreover, this bound
is established for analyzing the generalization performance
of bipartite document ranking.

The margin-based generalization bound based on the cov-
ering numbers of the hypothesis space is given in (Rudin and
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Schapire 2009): with probability 1− δ

L(fS)− L̂n(fS)

≤
√

4

nE2

[
8 log |H|

θ2
log

4nE2θ2

log |H| + 2 log
2

δ

]
,

where θ is the margin and E is a constant (refer to (Rudin
and Schapire 2009) for detail). This bound converges with
rate O

(
1√
n

)
.

Based on the empirical and U -process theory (Pakes
and Pollard 1989), (Rejchel 2012) investigated the statis-
tical properties of convex risk minimizers. Under the as-
sumption on the covering number of the hypothesis space,
N(t,H, ρ) ≤ Dit

−Vi , and some other assumptions (see in
(Rejchel 2012)), they proposed a generalization bound for
the regularized ranking algorithms on the hinge loss (see
(Rejchel 2012) in detail):

L(fS)− inf
f∈H

L(f) ≤ c1 max
( log n

n
,
1

nγ

)
+ c2

c3 + log δ

n
,

where γ ∈ (
2
3 , 1

)
. The rate of this bound is at most O

(
1
nγ

)
.

The assumption on the covering number of the hypothe-
sis space is satisfied only for some special kernels, such as
Gaussian kernel. For Gaussian kernel, the rate of our bound
can reach O(n− 1+β

2 ), 1+β
2 ≥ 3

4 .
The above theoretical analysis indicates that it is a good

choice to use the integral operator to analyze the generaliza-
tion ability of ranking.

Simulation Studies

In this subsection, we will compare our bounds with the
standard stability-based bound (Agarwal and Niyogi 2009),
Rademacher bound (Clémençon, Lugosi, and Vayatis 2005)
and the state-of-the-art bound (called U -process bound) (Re-
jchel 2012) on simulated datasets. For all experiments, we
simulate data from the true ranking model y = f∗(x) + ε
for x ∈ [0, 1], where f∗(x) = x2, the noise variables ε ∼
N(0, σ2) are normally distributed with variance σ2 = 0.1,
and the samples xi ∼ Uni[0, 1]. We use the the regularized
ranking algorithms on Hinge loss. The regularization param-
eter is set to be λ = 0.01 for all experiments1.

In the first experiment, we use the Fourier kernel
K(x, x′) =

∑20
i=1

1
i3ψi(x)ψi(x

′), where ψi is the Fourier
orthonormal basis. Note that this Fourier kernel satisfies the
assumption of algebraically decreasing eigenvalues, and the
eigenvalue decay rate α = 3. Our eigenvalue-based bound in
Theorem 3, the stability-based bound (Agarwal and Niyogi
2009) and the Rademacher-based bound (Clémençon, Lu-
gosi, and Vayatis 2005) with Fourier kernel are plotted
in Figure 2 2. The plot shows that the convergence rate
of our bound is faster than that of the stability-based and
Rademacher-based bounds, which conforms to our theoreti-
cal analysis.

1According to the setting in the experiments, we know that L =
1, M = 1. In our bounds, we set k = log(n) for all experiments.

2Since the U -process bound is satisfied only for Gaussian ker-
nel, so we only compare our bound with the stability bound and
Rademacher bound for Fourier kernel in this experiment.
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Figure 2: Our eigenvalue-based bound of Theorem 3,
the stability-based bound (Agarwal and Niyogi 2009)
and Rademacher bound (Clémençon, Lugosi, and Vayatis
2005). The kernel used in this figure is the Fourier kernel
K(x, x′) =

∑20
i=1

1
i3ψi(x)ψi(x

′).

In the second experiment, we using the Gaussian ker-
nel: K(x, x′) = exp

(− 1
2 |x− x′|2) , which satisfies the

assumption of factorial decreasing eigenvalues. Note that
inff∈H L(f) in the U -process bound is not computable,
in this experiment3, we set inff∈H L(f) = 0. Our
eigenvalue-based bound (in Theorem 4), stability-based
bound, Rademacher-based bound and U -process bound (Re-
jchel 2012) with Gaussian kernel are plotted in Figure 1. We
can find that the convergence rate of our bound is the fastest.

The results agree with our theoretical findings, and also
demonstrate the effectiveness of using eigenvalues of inte-
gral operator for deriving generalization bounds.

Conclusion

In this paper, we propose sharp generalization bounds via the
local Rademacher complexity and integral operator for the
regularized ranking algorithms in reproducing kernel Hilbert
space (RKHS). The order of the proposed bound is much
faster than O

(
1√
n

)
, while for most of existing bounds, the

order are at most O
(

1√
n

)
.

In future work, we will design the novel ranking algo-
rithms of fast convergence rate based on the theoretical re-
sults of this paper.
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