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Abstract

The selection of kernel function which determines the map-
ping between the input space and the feature space is of cru-
cial importance to kernel methods. Existing kernel selection
approaches commonly use some measures of generalization
error, which are usually difficult to estimate and have slow
convergence rates. In this paper, we propose a novel measure,
called eigenvalues ratio (ER), of the tight bound of general-
ization error for kernel selection. ER is the ratio between the
sum of the main eigenvalues and that of the tail eigenvalues of
the kernel matrix. Different from most of existing measures,
ER is defined on the kernel matrix, so it can be estimated eas-
ily from the available training data, which makes it usable for
kernel selection. We establish tight ER-based generalization
error bounds of order O (%) for several kernel-based meth-
ods under certain general conditions, while for most of exist-
ing measures, the convergence rate is at most O (ﬁ) Fi-
nally, to guarantee good generalization performance, we pro-
pose a novel kernel selection criterion by minimizing the de-
rived tight generalization error bounds. Theoretical analysis
and experimental results demonstrate that our kernel selec-
tion criterion is a good choice for kernel selection.

Introduction

Kernel methods, such as SVM (Steinwart and Christmann
2008), least squares support vector machine (LSSVM)
(Suykens and Vandewalle 1999) and kernel ridge regres-
sion (KRR) (Saunders, Gammerman, and Vovk 1998), have
demonstrated great success in solving many machine learn-
ing and pattern recognition problems. These methods im-
plicitly map data points from the input space to some fea-
ture space in which even relatively simple algorithms can
deliver very impressive performance. The feature mapping
is provided intrinsically via the choice of a kernel function.
Therefore, for a kernel method to perform well, the kernel
function plays a very crucial role.

Kernel selection is to select the optimal kernel by min-
imizing some kernel selection criterion that is usually de-
fined via the estimate of the generalization error (Bartlett,
Boucheron, and Lugosi 2002). The estimate can be empir-
ical or theoretical. The k-fold cross-validation (KCV) and
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leave-one-out cross-validation (LOO) are widely used em-
pirical estimates of generalization error, but they require
training the algorithm many times, which unavoidably in-
curs high computational burdens. For the sake of efficiency,
some approximate KCV and LOO methods are given: such
as generalized cross-validation (Golub, Heath, and Wahba
1979), span bound (Chapelle et al. 2002), influence function
(Debruyne, Hubert, and Suykens 2008) and Bouligand in-
fluence function (Liu, Jiang, and Liao 2014). Kernel target
alignment (KTA) (Cristianini et al. 2001) is another popu-
lar used empirical estimate, which is used to quantify the
similarity between the kernel matrix and the label matrix.
Several related criteria were also proposed, such as cen-
tered kernel target alignment (CKTA) (Cortes, Mohri, and
Rostamizadeh 2010) and feature space-based kernel matrix
evaluation (FSM) (Nguyen and Ho 2008). Although KTA,
CKTA and FSM are widely used, the connection between
these estimates and the generalization error of some special
algorithms, such as SVM, LSSVM and KRR, has not es-
tablished, hence the kernels chosen by these estimates may
not guarantee good generalization performance for these al-
gorithms (Liu, Jiang, and Liao 2013). Minimizing theoret-
ical estimate bounds of generalization error is an alterna-
tive to kernel selection. The widely used theoretical esti-
mates usually introduce some measures of the complexity of
the hypothesis space, such as VC dimension (Vapnik 2000),
radius-margin bound (Vapnik 2000), maximal discrepancy
(Bartlett, Boucheron, and Lugosi 2002), Rademacher com-
plexity (Bartlett and Mendelson 2002), compression coeffi-
cient (Luxburg, Bousquet, and Scholkopf 2004), eigenvalues
perturbation (Liu, Jiang, and Liao 2013), spectral perturba-
tion stability (Liu and Liao 2014a), kernel stability (Liu and
Liao 2014b) and covering number (Ding and Liao 2014).
Unfortunately, for most of these measures, it is difficult to
estimate their specific values (Nguyen and Ho 2007), hence
hard to use them for kernel selection in practice. Moreover,
most of these measures usually have slow convergence rates
of order O (1/+/n) at most.

In this paper, we propose a novel measure, called eigen-
values ratio (ER), for deriving a tight bound of generaliza-
tion error for kernel selection. ER is the ratio between the
sum of the main eigenvalues and that of the tail eigenvalues
of the kernel matrix. Unlike most of existing measures, our
measure is defined on the kernel matrix that can be estimated



easily from the available training data. The tight ER-based
generalization error bounds of SVM, KRR and LSSVM
are established, which have convergence rates of the or-
der O (1) under some certain general conditions. While
for the existing standard generalization error bounds, such
as Rademacher complexity bound (Bartlett and Mendelson
2002) and radius-margin bound (Vapnik 2000), and the latest
eigenvalues perturbation bound (Liu, Jiang, and Liao 2013),
the convergence rates are O(1/+/n) at most. Furthermore,
we propose a new kernel selection criterion by minimizing
the derived tight upper bounds to guarantee good general-
ization performance. Theoretical analysis and experimental
results demonstrate the effectiveness of our criterion.

Related Work

One of the most useful data-dependent complexity measures
used in the theoretical analysis is the notion of Rademacher
complexity (Bartlett and Mendelson 2002; Koltchinskii and
Panchenko 2002). Unfortunately, it provides global esti-
mates of the complexity of the function class, that is, it does
not reflect the fact that the algorithm will likely pick func-
tions that have a small error. In recently years, several au-
thors have considered the use of local Rademacher complex-
ity to obtain better generalization error bounds. The local
Rademacher complexity considers Rademacher averages of
smaller subset of the hypothesis set, so it is always smaller
than the corresponding global one.

Koltchinskii and Panchenkoy (2000) first considered us-
ing the local Rademacher complexity to obtain data de-
pendent upper bounds using an iterative method. Bous-
quet, Koltchinskii and Panchenko (2002) proposed a more
general result avoiding the iterative procedure. Lugosi and
Wegkamp (2004) established the oracle inequalities using
local Rademacher complexity and also demonstrated the ad-
vantages of local Rademacher complexity over those based
on the complexity of the whole model class. Bartlett, Bous-
quet and Mendelson (2005) gave the optimal rates based on
a local and empirical version of Rademacher, and presented
some applications to classification and prediction with con-
vex function classes, and with kernel classes in particu-
lar. Koltchinskii (2006) proposed new bounds on the error
of learning algorithms in terms of the local Rademacher
complexity, and applied these bounds to develop model se-
lection techniques in abstract risk minimization problems.
Srebro, Sridharan and Tewari (2010) established an excess
risk bound for ERM with local Rademacher complexity.
Mendelson (2003) presented sharp bounds on the localized
Rademacher averages of the unit ball in a reproducing ker-
nel Hilbert space in terms of the eigenvalues of the integral
operator associated with the kernel function. Based on the
connection between local Rademacher complexity and the
tail eigenvalues of the integral operator, Kloft and Blanchard
(2011) derived an upper bound of multiple kernel learning
with the tail eigenvalues. Unfortunately, the eigenvalues of
the integral operator are difficult to compute as the proba-
bility distribution is unknown, so Cortes, Kloft and Mohri
(2013) used the tail eigenvalues of the kernel matrix, that
is the empirical version of the tail eigenvalues of the in-
tegral operator, to design new algorithms for learning ker-
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nels. However, the theoretical error bound based on the tail
eigenvalues of the kernel matrix was not established. More-
over, for different kinds of kernel functions or the same kind
of kernel functions but with different parameters, the dis-
crepancies of eigenvalues of different kernels are very large,
hence the absolute value of the tail eigenvalues can’t pre-
cisely reflect the goodness of different kernels. In this paper,
we consider applying the relative value of eigenvalues of the
kernel matrix, that is, the ratio between the sum of the main
eigenvalues and that of the tail eigenvalues, for kernel selec-
tion. We establish the link between this relative value and the
notion of local Rademacher complexity, and further present
tight theoretical error bounds of KRR, LSSVM and SVM.
To our knowledge, the generalization error bounds based on
the eigenvalue analysis of the kernel matrix, of convergence
rates of the order O(%) under certain general conditions,
have never been given before.

The rest of the paper is organized as follows. Some pre-
liminaries are introduced in Section 2. In Section 3, we pro-
pose the definition of ER and give some theoretical analysis.
Section 4 shows how to use ER to derive tight generalization
error bounds. In Section 5, we propose the kernel selection
criterion by minimizing the derived error bounds. We empir-
ically analyze the performance of our proposed criterion in
Section 6. Finally, we conclude in Section 7.

Preliminaries

Let S = {z; = (xi,y:)}[~, be a sample set of size n drawn
identically and independently from a fixed, but unknown
probability distribution P on Z = X x ), where X denotes
the input space and ) denotes the output domain, ) C R in
regression case and Y = {+1, —1} in classification case.

Let K : X x X — R be a kernel function. Its correspond-
ing kernel matrix is defined as K = [%K(thj)]?j:l-
K is positive semidefinite, hence its eigenvalues sétisfy
M(K) > M(K) > -+ > A\ (K) > 0. The reproducing
kernel Hilbert space (RKHS) H x associated with K is de-
fined to be the completion of the linear span of the set of
functions { K (x, -) : x € X'} with the inner product denoted
as <'a >K SatiSfying <K(Xa ')a f>K = f(X), Vf € HK

In this paper, we study the regularized algorithms:

- A
{i > UFe) ) + nf||%<} S
i=1

where £(-,-) is a loss function and X is the regularization
parameter. SVM, LSSVM and KRR are the special cases of
the regularized algorithms. For SVM, £(t,y) = max(0,1 —
yt), for both KRR and LSSVM, £(t,y) = (y — t)2.

The performance of the regularized algorithms is usually
measured by the generalization error

fs == argmin
feMk

R(S)

/ U(f5(x), y)dP(x, ).
X XY

Unfortunately, R(S) can not be computed since P is un-
known. Thus, we estimate it using the empirical error

Remp(s) = % ZZ‘L:1 é(fs(xi)7yi)'



In the following, we assume that || f||cc < D, Vf € Hx,
ly| < M, ¥y € Y, the trace of the kernel matrix Tr(K)
¢ < oo and supy ey K(x,X') =t £ < oo.

Eigenvalues Ratio

In this section, we first introduce the notion of eigenvalues
ratio (ER) and then give some analysis of ER.

Definition 1 (Eigenvalues Ratio). Assume K is a kernel
function, K = [1K (xz,x7)]nj | Is its corresponding ker-
nel matrix, and \;(K) is the ith eigenvalue of K, A1 (K) >

A(K) > -+ > A\, (K). Then the t-eigenvalues ratio of the
kernel function K, t € {1,2,--+ ,n — 1}, is defined as
22:1 )‘l(K) =5
Z?:t+1 )‘Z(K)

According to the above definition, ER is the ratio between
the sum of the main eigenvalues and that of the tail eigenval-
ues of the kernel matrix. ER is closely related to the notion
of local Rademacher complexity (Cortes, Kloft, and Mohri
2013). So, we can establish generalization error bound with
ER.

Different from the existing notions of measure, see,
e.g., (Vapnik 2000; Bartlett, Boucheron, and Lugosi 2002;
Bartlett and Mendelson 2002; Koltchinskii 2006) and the
references therein, ER is defined on the kernel matrix, hence
we can estimate its value from the available training data,
making this measure usable for kernel selection in practice.

Theorem 1. If K satisfies the assumption of algebraically
decreasing eigenvalues, that is Iy > 1 M(K) =
O(5i Li=7). Then the t-eigenvalues ratio of K satisfies

Sa(1020).

th=
Proof. We sketch the proof. According to assumption of
algebraically decreasing eigenvalues, we first show that

Yo M(K) = O( té:jl))) Then, from the definition of
B B = (Tr(K) — Mi(K)) /3 Mi(K), itiDS

B @

Z? t+1

easy to complete the proof.

The assumption of algebraically decreasing eigenvalues
of the kernel is a common assumption, for example, met for
popular shift invariant kernel, finite rank kernels and convo-
lution kernels (Williamson, Smola, and Scholkopf 2001).

One can see that ER is only related to kernel matrix and
independent of specific learning task. Therefore, we can ap-
ply this measure for different learning tasks.

ER Based Generalization Error Bounds

In this section, we show how to apply ER to derive the tight
generalization error bounds for SVM, KRR and LSSVM.

Support Vector Machine (SVM)

SVM has been successfully applied to solve classification
problems, its loss function is the hinge loss.
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Theorem 2. If the t-eigenvalues ratio of the kernel function
K is B;. Then for SVM, with probability 1 -9, for any k > 1,

/1 C! 3
R(S) S Remp(S) + Cl 5 + 72 lOg 5 + CSa (3)
t
Cy = 12kv2k, Cy = k(96Ft + 96 + 5F) + 22, C5 =

(1+D)/(k—1), F=1+ D.

Proof. We sketch the proof. We first show that the local
Rademacher complexity of Hx can be bounded with ER:

Rn(’HK,r) < ,/%(t -1+ K/fBt), where ]:Bn(HK,r) is the

local Rademacher complexity of H i . Then, by Theorem 4.1
of (Bartlett, Bousquet, and Mendelson 2005), we can ob-
tain R(S) < Mmn(S) | gppe 4 LEGIEA00
is the fixed point of 2F'\/ 2(t - r + r/3;) + 131log(3/6) /n.
Finally, we estimate 7*, and show that 7* < 16F 2t/ n +
261og(3/0)/n + 2F+/k/(npt), to complete the proof. [

The above theorem shows that the convergence rate of
R(S)=Remp(S) is O (1/+/np; 4+ 1/n). Under the common
assumption of algebraically decreasing eigenvalues, from
Theorem 1, we have 8, = Q (n(y —1)/t'~7) . Thus, the

bound (3) converges at rate O (% (tl W) + ) (0] (%) )
Traditional Generalization Error Bounds Generaliza-
tion error bounds based on Rademacher complexity are stan-
dard (Bartlett and Mendelson 2002). For any 6 > 0, R(S) <
Rerp(S)+ R (Hk)/2++/In(1/8)/2n, where R, (H ) is

the Rademacher complexity of Hre. Ry, (H ) is in the order
of O( — ) for various kernel classes used in practice, includ-

ing the kernel class with bounded trace. Thus, in this case,
this bound converges at rate O(ﬁ)

For other measures, such as radius-margin bound (Vapnik
2000). R(S) < Reup(S) + /c(R?10g? n/p? — logd)/n.

So, this bound converges at rate O(4/log® n/n).

For the latest eigenvalues perturbation bound (Liu, Jiang,
and Liao 2013), R(S) < Remp(S) + v/c(/n, where ¢ is
the eigenvalues perturbation of kernel function, see defini-
tion 1 in (Liu, Jiang, and Liao 2013) for detail. This bound
converges at rate O(1/y/n).

The above theoretical analysis indicates that using the
measure of eigenvalues ratio can obtain tight bound under
some general conditions, which also demonstrates the ef-
fectiveness of the use of eigenvalues ratio to estimate the
generalization error. Thus, to guarantee good generalization
performance, it is reasonable to choose the kernel function
with small Repp,(S) and 1/5;.

Kernel Ridge Regression (KRR)

KRR is a popular learning machine for solving regression
problems, its loss function is the square loss.

Theorem 3. If the t-eigenvalues ratio of K is ;. Then for
KRR, with probability at least 1 — 9, Vk > 1,

R(S) < Remp(s) + C(4 V 1/(”50 + 05/71 + 067

, where 7*

“4)



A =0.01

Data sets ER (ours) EP 5-CV LOO CKTA FSM
australian 14.014+2.10 14.20+1.95 14.78+1.87 14.30+1.85 13.98+2.10 44.15+3.30
heart 17.0843.28 18.56+3.59 16.9143.64 16.71+3.29 16.7543.50 44.65+4.35
ionosphere 8.98+2.39 9.65+2.58 5.97+1.58 6.3242.33 32.8948.71 35.68+3.13
breast-cancer 3.594+0.97 3.72+1.04 3.77+1.09 3.61+0.94 31.7249.40 4.36+0.93
diabetes 22.30+2.30 22.81+2.67 22.434+2.69 22.06+2.31 35.09+2.87 35.09+2.87
german.numer 23.76+2.34 26.144+1.70 24.1142.16 24.1442.31 30.3642.57 30.364+2.57
liver-disorders 28.56+3.75 30.80+3.40 29.17+4.24 29.04+4.37 36.831+6.53 40.83+4.72
a2a 17.7440.95 19.2241.07 17.804+1.03 17.67+0.90 25.2141.40 25.2141.40

A=0.1
australian 13.46+1.91 13.5942.03 14.594+2.07 14.41£1.73 19.89+6.18 44.15+3.30
heart 16.87+3.39 17.1243.40 17.08+3.82 17.16+3.81 40.29+10.03 44.65+4.35
ionosphere 7.874+2.36 8.8942.57 5.304+1.29 6.38+1.92 35.754+3.04 35.68+3.13
breast-cancer 3.5340.97 4.234+1.09 3.794+0.91 3.51+0.94 32.70+6.57 3.8440.81
diabetes 22.25+2.53 22.99+2.75 22.3542.40 22.16+2.35 35.09+2.87 35.09+2.87
german.numer 23.774+2.37 23.89+2.13 24.08+2.15 23.99+2.31 30.36+2.57 30.36+2.57
liver-disorders 29.01+4.19 34.20+3.93 30.194+4.13 30.774+4.00 35.544+7.29 40.83+4.72
a2a 17.81£1.19 18.114+1.22 17.9241.01 17.68+0.97 25.2141.40 25.2141.40

A=1
australian 14.12+1.62 14.17+1.58 14.67+2.07 14.61+1.86 44.07+3.35 44.15+3.30
heart 16.83+3.56 17.1243.30 17.08+3.01 17.1243.72 44.65+4.35 44.65+4.35
ionosphere 7.8142.60 11.02+3.13 5.43+1.97 6.574+2.08 35.75+3.04 35.68+3.13
breast-cancer 3.4340.95 4.544+1.55 3.534+0.83 3.25+0.94 34.444+2.32 3.5440.87
diabetes 22.3942.53 24.65+3.29 22.4842.22 22.1942.20 35.0942.87 35.094+2.87
german.numer 24.57+2.38 24.59+2.47 24.2442.41 24.13+2.37 30.36+2.57 30.36+2.57
liver-disorders 29.46+3.69 41.96+4.45 30.384+3.99 30.8743.42 36.194+6.09 40.83+4.72
a2a 18.17+1.23 18.66+1.31 18.01+1.00 17.83+1.08 25.21+1.40 25.21+1.40

A=10
australian 13.85+1.88 14.194+1.71 14.524+1.73 14.354+2.06 44.074+3.35 44.07+3.35
heart 17.044+3.62 17.3743.59 16.79+3.44 17.04+3.36 44.65+4.35 44.65+4.35
ionosphere 8.891+2.63 14.224+3.74 6.92+1.87 6.76+1.88 36.0643.06 36.06+3.06
breast-cancer 3.2440.89 5.71£1.59 3.374+0.93 3.22+1.08 35.04+2.45 3.614+0.88
diabetes 23.4143.07 34.9943.13 23.0942.78 22.54+2.51 35.0942.87 35.094+2.87
german.numer 27.13+2.65 29.64+3.30 26.9442.80 26.86+2.87 30.36+2.57 30.36+2.57
liver-disorders 34.97+4.47 41.89+4.39 35.354+4.46 35.134+4.49 39.264+4.74 41.86+4.46
a2a 18.79+1.19 19.26+1.60 18.77+1.21 18.71+1.21 25.23+1.43 25.23+1.43

Table 1: Comparison of mean test errors between our eigenvalues ratio criterion (ER) and other ones including 5-CV, LOO,
CKTA, FSM and EP. We bold the numbers of the best method, and underline the numbers of the other methods which are not

significantly worse than the best one.

where Cy = 12hBk~/2k, C5 = 96h? Bkt + (96k + 22M +
5Bk)log(3/5), h =2(M + D), Cs = (D + M)?/(k — 1),
B=(D+ M)~

The idea of proof is same as that of Theorem 2.

The convergence rate of KRR is O (1/v/nf; + 1/n). Un-
der the assumption of algebraically decreasing eigenvalues,
the converges rate can reach O(1/n). This theorem also in-
dicates that the kernel with small Ren(S) and 1/5; can
guarantee good generalization performance.

Least Squares Support Vector Machine (LSSVM)

LSSVM is a popular classifier which has the same loss func-
tion as that of KRR. Thus, applying Theorem 3 with M = 1,
we can obtain the following corollary:

Corollary 1. If the t-eigenvalues ratio of K is [3;, then for
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LSSVM, with probability at least 1 — 6, for any k > 1,

R(S) < Remp(S) + C7/1/(np:) + Cs/n+ Cy,

where C7; = 12hk+\/2k, Cs = 96Bh%kt + (96k + 22 +
5Bk)log(3/8), h = 2(1 4+ D), Co = (1 + D)?/(k — 1),
B=(D+1)>~

Kernel Selection with Eigenvalues Ratio

In this section, we will present a novel kernel selection crite-
rion with ER to guarantee good generalization performance.

From the generalization error bounds derived in above
section, to guarantee good generalization performance, we
can choose the kernel function by minimizing Ry, (S) and
1/p;. Thus, we apply the following eigenvalues ratio crite-
rion for kernel selection:

arg min Remp(S) + 1 - n/B =1 KS(K)
KeK
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Figure 1: The test errors of our eigenvalue ratio criterion (ER) with different n. For each 7, we choose the kernel by ER on the
training set, and evaluate the test errors for the chosen parameters on test set.

where 7 is the trade-off parameter and /C is a candidate set
of kernel functions.

Time Complexity Note that Y 1", | A(K) = Tr(K) —
S, Mi(K), where Tr(K) is the trace of matrix kernel K.
Thus, we only need O(tn?) to compute £;. So the overall

time complexity of eigenvalues ratio criterion is O(tn?+.J),
where J is the time complexity of computing Remp(S).

Remark 1. Instead of choosing a single kernel, several
authors consider combining multiple kernels by some cri-
teria, called multiple kernel learning (MKL), see, e.g.,
(Lanckriet et al. 2004; Liu, Liao, and Hou 2011), etc.
Our eigenvalues ratio criterion can be applied to MKL:
min, KS(K,) s.t|pll, = Lp > 0, K, = Zle i K.
The above optimization problem can be efficiently solved
with gradient-based algorithms. However, in this paper,
we mainly want to verify the effectiveness of ER criterion.
Therefore, in our experiments, we focus on comparing our
criterion with other popular kernel selection criteria.

Experiments

In this section, we will empirically analyze the performance
of our proposed eigenvalues ratio criterion (ER). The evalu-
ation is made on 8 available public data sets from LIBSVM
data seen in Table 1. For each data set, we run all methods
30 times with randomly selected 70% of all data for train-
ing and the other 30% for testing. The use of multiple train-
ing/test partitions allows an estimate of the statistical signif-
icance of differences in performance between methods. Let
A; and B; be the test errors of methods A and B in partition
i,andd; = B; — A;,i=1,...,30. Let d and Sy be the mean
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and standard error of d;. Then under t-test, with confidence
level 95%, we claim that A is significantly better than B (or
equivalently B significantly worse than A) if the ¢-statistic

ﬁ > 1.699. All statements of statistical significance in
the remainder refer to a 95% level of significance.

In the first experiment, we compare our ER criterion
with five popular kernel selection criteria: 5-fold cross-
validation (5-CV), leave-one-out cross-validation criterion
(LOO), centered kernel target alignment (CKTA) (Cortes,
Mohri, and Rostamizadeh 2010), feature space-based ker-
nel matrix evaluation (FSM) (Nguyen and Ho 2007) and
the latest eigenvalues perturbation criterion (EP) (Liu, Jiang,
and Liao 2013). We use the popular Gaussian kernels

K(x,x') = exp (—|x —x'||3/27) as our candidate ker-
nels, 7 € {2¢i = —15,—14,...,15}. The learning ma-
chine we used is LSSVM.

For each kernel selection criterion and each training set,
we chose the optimal kernel parameter 7 for each fixed reg-
ularized parameter A € {0.01,0.1,1,10}, and then evalu-
ate the test error for the chosen parameters on the test set.
The optimal values for the parameters t € {1,4,16} and
n € {0.2,0.6,1} of ER, and the parameter § € {2',i =
0, 5,10, 15,20} of EP (following the same experimental set-
ting of EP in (Liu, Jiang, and Liao 2013)) are determined
by 3-fold cross-validation on the training set, we will ex-
plore the influence of parameters ¢ and 7 in the next exper-
iment. The average test errors are reported in Table 1. The
results in Table 1 can be summarized as follows: (a) Our
ER is significantly better than CKTA and FSM on nearly all
data sets. This can possibly be explained by the fact that
the connection between CKTA (or FSM) and generaliza-
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Figure 2: The test errors of our eigenvalue ratio criterion (ER) with different ¢. For each ¢, we choose the kernel by ER on the
training set, and evaluate the test errors for the chosen parameters on test set.

tion error of LSSVM has not been established, so the ker-
nels chosen by this criterion can not guarantee good gen-
eralization performance; (b) ER is significantly better than
EP on 5 (or more) of the 8 benchmarks without being sig-
nificantly worse on any of the remaining data sets for each
regularized parameter. The convergence rate of ER-based er-
ror bound is much faster than that of EP-based one, so the
performance of ER being better than that of EP is conform
to our theoretical analysis; (c) Our ER give comparable re-
sults to 5-CV and LOO. Specifically, for A = 0.1, ER is
significantly better than 5-CV and LOO on australian and
german.numer, and is significantly worse on ionosphere. For
other A € {0.01,1, 10}, the results are similar with that of
A = 0.1. ER gives similar accuracies results with 5-CV and
LOO, but ER only need to train once, which is more efficient
than 5-CV and LOO, especially for LOO. The above results
show that ER is a good choice for kernel selection.

In the next experiments, we will explore the influence of
the parameters ¢ and 7 for ER. The average test errors over
different 7 are given in Figure 1 (in this experiment, we only
report the results of ¢ = 4, similar results can be found with
other values, e.g. t € {2,8}). One can see that, for appropri-
ate A € {0.01,0.1, 1}, the test errors are stable with respect
ton € [0.4, 1.5]. However, for the largest A (A = 10), the test
errors with respect to 7 is not very stable on some data sets,
which is possibly because A is unreasonably large. From Ta-
ble 1, we can find that the optimal regularized parameter A is
almost in {0.1,1}. In fact, we also consider using the large
value of A, such as A € {100,1000}, but we find that the
performance of this large A are almost much worse than that
of A € {0.01,0.1,1}. Thus, it is usually not necessary to set
the value of A too large. The test errors over different ¢ are
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given in Figure 2 (Figure 1 shows that = 0.6 is a good
choice, so in this experiment, we set = 0.6). From Figure
2, we can find that for all A except the largest one, ¢ is stable
w.r.t [2, 8]. The robustness property of the parameters ¢ and
71 implies that, for appropriate A\ (not too large), we can ran-
domly selectn) € [0.4,1.5] and ¢ € [2, 8], without sacrificing
much accuracy. We believe that this robustness property can
bring some advantages in practical application.

Conclusion

We introduced a novel measure of eigenvalues ratio (ER)
which has two main advantages compared with most of ex-
isting measures of generalization error: 1) defined on the
kernel matrix, hence can be estimated easily from available
training data; 2) has a fast convergence rate of order O(%)
To our knowledge, the theoretical error bounds via spectral
analysis of the kernel matrix, of convergence rates of the
order O(%), has never been given before. Furthermore, we
proposed a kernel selection criterion by minimizing the de-
rived tight generalization upper bound, which can guarantee
good generalization performance. Our kernel selection crite-

rion was theoretically justified and experimentally validated.

In future, we will consider applying the notion of ER for
multiple kernel learning and for deriving tight generalization
error bounds of other kernel-based methods.
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