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Abstract
Knowledge resolution is the task of clustering knowledge mentions, e.g., entity and relation
mentions into several disjoint groups with each group representing a unique entity or relation.
Such resolution is a central step in constructing high-quality knowledge graph from unstructured
text. Previous research has tackled this problem by making use of various textual and structural
features from a semantic dictionary or a knowledge graph. This may lead to poor performance
on knowledge mentions with poor or not well-known contexts. In addition, it is also limited by
the coverage of the semantic dictionary or knowledge graph. In this work, we propose ETransR,
a method which automatically learns entity and relation feature representations in continuous
vector spaces, in order to measure the semantic relatedness of knowledge mentions for knowledge
resolution. Experimental results on two benchmark datasets show that our proposed method
delivers significant improvements compared with the state-of-the-art baselines on the task of
knowledge resolution.
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1 Introduction

Access to an organized knowledge graph is critical for many real-world tasks, such as query sug-
gestion and question answering. Most real-world information is unstructured, interconnected,
noisy, and often expressed in the form of text. This inspires constructing an organized knowl-
edge graph from the large volume of noisy text data. A large number of knowledge graphs
have been constructed, such as Freebase [1], Knowledge Valut [8], YAGO [9], Probase [18]. An
important component in constructing knowledge graphs is knowledge resolution. Given the
knowledge mentions (e.g., entity mentions and relation mentions) in unstructured text data,
the goal of knowledge resolution is to cluster knowledge mentions into disjoint groups with each
group representing a unique knowledge.
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The knowledge resolution task is challenging due to the fact that many knowledge mentions
are ambiguous: the same mention can refer to various different real world entities or relation-
s when they appear in different contexts, and many knowledge has various mention forms.
Knowledge resolution plays a critical role in high-quality knowledge graph construction. When
knowledge extracted from text data is ready to be inserted into the knowledge graph, it is nec-
essary to know which real world knowledge this piece of information should be associated with.
If a wrong decision is made here, the knowledge graph will not only lose some information, but
also introduce errors.

Traditional approach to knowledge resolution usually makes use of various textual and
structural features from a semantic dictionary or a knowledge graph (e.g., [5], [16]), which may
lead to poor performance on knowledge mentions with poor not well-known contexts. Moreover,
its performance is also limited by the coverage of the semantic dictionary or knowledge graph.
Recently, a promising approach for the task is embedding knowledge into a continuous vector
space to learn feature representations, in order to measure the semantic relatedness of knowledge
mentions for knowledge resolution. Following this approach, many methods have been explored,
which will be introduced in detail in Section 2. Among these methods, some notable works,
including TransE [3], TransH [17], TransR [11] are effective and efficient. TransE represents
entities as points and relations as translations from head entities to tail entities in a vector
space. TransH models a relation as a hyperplane together with a translation operation on it.
TransR models entity and relation embeddings in separate vector spaces, which are bridged
by relation-specific matrices. These methods mainly focus on modeling single knowledge in
continuous space, which ignore modeling the semantic relatedness between knowledges.

In order to learn better knowledge representations to model the complicated semantic cor-
relations between knowledge triples, we propose a new model, named ETransR. ETransR is
the extension form of TransR, which models entities and relations in distinct vector spaces,
i.e., entity space and multiple relation spaces, and performs translation in the corresponding
relation space. The basic idea of ETransR is illustrated in Figure 1. In ETransR, for each
knowledge tripe (h, r, t), it first embeds entities in entity space, relations in relation space. And
then it projects entity embeddings into relation space by relation-specific matrix Mr, which can
obtain hr+r ≈ tr. The model can make the head/tail entities that actually hold the relation
(denoted as circles) close with each other, and get far away from those that do not hold the
relation (denoted as triangles).

Figure 1: The illustration of ETransR

Given two knowledge triples (h1, r1, t1) and (h2, r2, t2), if they are two mention forms of a
unique knowledge, then they will satisfy tr1 - hr1 ≈ tr2- hr2 . For head entities, if h1 is the same
as h2, it will have hr2+ r1 ≈ tr1 , hr1+ r2 ≈ tr2 . And for tail entities, if t1 is the same as t2, it
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will have hr1+ r1 ≈ tr2 , hr2+ r2 ≈ tr1 . In addition, considering that the representations of a
group of knowledge mentions of a unique knowledge usually exhibit same semantic patterns, we
extend ETransR by clustering same knowledge mentions into groups and learning knowledge
embeddings for each group, named as CETransR (cluster-based ETransR), which follows the
idea of piecewise linear regression [14].

Our main contribution is the development of an innovative knowledge representation model
for measuring knowledge semantic correlations to help boost the knowledge resolution perfor-
mance, which automatically learns entity and relation feature representations in continuous
vector spaces. Experimental results on two benchmark datasets validate the effectiveness and
efficiency of our method compared with the state-of-the-art methods.

The rest of this paper is organized as follows. In Section 2, we give a review of related
work. Section 3 introduces our entity and relation embedding models for learning knowledge
representations. Section 4 is devoted to the experimental results. Finally, the paper is concluded
in Section 5.

2 Related Work

Knowledge embedding has received a lot of attentions in recent years, existing knowledge em-
bedding methods aim to represent entities and relations of knowledge graphs as vectors in a
continuous vector space, where they usually defined a loss function to evaluate the represen-
tations. A variety of approaches have been explored for knowledge embedding. They can be
divided into three major categories.

The first category is the translation based approach. Some notable works, including TransE
[3], TransH [17], TransR [11] and TransA [10] are effective and efficient. TransE assumes
h+r ≈ t when (h, r, t) is a golden triple, which indicates that t should be the nearest neighbor of
h+r. To deal with relations with different mapping properties, TransH is established to project
entities into a relation-specific hyperplane and the relation becomes translating operation on
hyperplane. For a relation r, TransH models the relation as a vector r on a hyperplane with
wr as the normal vector. For a triple (h, r, t), the entity embeddings h and t are first projected
to the hyperplane of wr, denoted as h⊥ and t⊥. By projecting entity embeddings into relation
hyperplanes, it allows entities playing different roles in different relations. Both TransE and
TransH assume embeddings of entities and relations being in the same space Rk. However, an
entity may have multiple aspects, and various relations focus on different aspects of entities.
Hence, it is intuitive that some entities are similar and thus close to each other in the entity
space, but are comparably different in some specific aspects and thus far away from each
other in corresponding relation spaces. To address this issue, TransR is proposed to model
entities and relations in distinct spaces, i.e., entity space and multiple relation spaces, which
are bridged by relation-specific matrices. In TransR, for each triple (h, r, t), entities embeddings
are set as h, t ∈ Rk and relation embedding is set as r ∈ Rd. For each relation r, TransR
sets a projection matrix Mr ∈ Rk×d, which may projects entities from entity space to relation
space. These methods define a global margin-based loss function to learn knowledge embedding
representations, and share the same set of candidate settings for different entities and relations,
which ignore the individual locality of knowledge representations and seems not convincing in
theory. To address this issue, TransA is proposed to adaptively finds the optimal loss function
by adaptively determining its margin over different knowledge triples.

The second category is the tensor decomposition based approach, which is a well-developed
mathematical tool for data analysis. Some notable works, including TUCKER [6], RESCAL
[13] and TRESCAL [7] belong to this category. TUCKER decomposition, also known as high-
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order singular value decomposition (SVD), factorizes a tensor into a core tensor multiplied by a
matrix along each dimension. RESCAL is a tensor factorization based method. Compared with
other tensor factorizations, the main advantage of RESCAL is that it can exploit a collective
learning effect when applied to relational data. RESCAL has shown very good results in
various canonical relational learning tasks such as link predication. TRESCAL is an extension
of RESCAL, which tries to encode rules into RESCAL. However, it focuses solely on a single
rule, i.e., the arguments of a relation should be entities of certain types.

The third category is the energy based approach, which assigns low energies to plausible
triples of a knowledge graph and employs neural network for learning. For example, Unstruc-
tured model [2] is proposed as a naive version of TransE by assigning all r = 0, leading to score
function fr(h, t) =∥ h − t ∥22. This model cannot consider differences of relations. Structured
embedding (SE) model [4] designs two relation-specific matrices for head and tail entities, i.e.,
Mr,1 and Mr,2, and defines the score functions as an L1 distance between two projected vectors,
i.e., fr(h, t) =∥ Mr,1h−Mr,2t ∥1. Since the model has two separate matrices for optimization,
it cannot capture precise relations between entities and relations. Neural tensor network (NTN)
model [15] represents entities in a d-dimensional vectors created separately by averaging pre-
trained word vectors, and then learns a d×d×m tensor describing the interactions between these
latent components in each of m relations. Meanwhile, the corresponding high complexity of
NTN may prevent it from efficiently applying on large-scale knowledge graphs. However, these
methods mainly focus on modeling single knowledge in continuous vector spaces, which ignore
the semantic relatedness modeling between knowledges. We intend to propose an comprehen-
sive translation method to automatically learning entity and relation feature representations in
continuous vector spaces, in order to measure the semantic relatedness of knowledge mentions
for knowledge resolution.

3 Embedding by Translating on Two Vector Spaces

In order to model the semantic correlations between knowledges, we propose ETransR mod-
el, which models entities and relations in distinct vector spaces, and performs translation in
the corresponding relation space, in order to measure the semantic relatedness of knowledge
mentions for knowledge resolution.

3.1 Embedding Model

In ETransR model, for each knowledge triple (h, r, t), h, t ∈ Rk represents entity embeddings
of h and t, respectively; r ∈ Rm represents relation embeddings of r. k denotes the entity
embeddings dimension, m denotes the relation embeddings dimension. It is noted that k and
m are not necessarily identical, i.e., k ̸= m. For each relation r, we set a projection matrix
Mr ∈ Rk×m, to project entity embeddings in entity space to relation space. Specifically, for a
triple (h, r, t), the embeddings h and t are first projected to the relation space with projection
matrix Mr. The entities embedding projections are denoted as hr and tr, where hr = hMr,
tr = tMr. We expect hr and tr can be connected by the relation embedding r on the relation
space with low error if (h, r, t) is a golden triple, and high error if (h, r, t) is a incorrect triple.
Thus we define a score function ||hr + r− tr||d to measure the plausibility that the knowledge
triple is incorrect, where d denotes L1 or L2-norm. Given two knowledge triples (h1, r1, t1) and
(h2, r2, t2), we define a score function to measure the dissimilarity between the two triples. The
score function is correspondingly defined as

fr1,r2(h1, t1;h2, t2) = ||(tr1 − hr1)− (tr2 − hr2) + (r1 − r2)||d (1)
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The score is expected to be lower for two similar triples and higher for two dissimilar triples. In
this paper, we restrict ||h||2 ≤ 1, ||t||2 ≤ 1, ||r||2 ≤ 1, ||hMr||2 ≤ 1, ||tMr||2 ≤ 1. The model
parameters consist of all elements of the entities’s embeddings vectors, relations’ embeddings
vectors and relations’ projection matrices.

ETransR learns a unique vector for each relation, which may be under-representative to fit
all knowledge triple mentions representing a unique knowledge triple, because these knowledge
triple mentions exhibit same semantic patterns. In order to better model these knowledge
triples, we extend ETransR by clustering same knowledge triple mentions into groups and
learning knowledge embeddings for each group, named as CETransR (cluster-based ETransR),
which follows the idea of piecewise linear regression [14].

In CETransR, it first segments input knowledge triple mentions into several groups, where
each group represents a unique knowledge triple. Formally, for a specific knowledge triple
(h, r, t), all knowledge triple mentions in the dataset are clustered into multiple groups, and
knowledge triple mentions in each group are exhibit same semantic patterns. All entity pairs
(h, t) are represented with their vector offset (t−h) for clustering. Afterwards, we learn a sepa-
rate relation vector rc for each cluster and projection matrix Mr for each relation, respectively.
The entities embeddings projection vectors are defined as hr,c = hMr, tr,c = tMr. Given
two similar knowledge triples (h1, r1, t1) and (h2, r2, t2), the score function is correspondingly
defined as

fr1,r2(h1, t1;h2, t2) = ||(tr1,c − hr1,c)− (tr2,c − hr2,c)||d + α(||rc − r1||d − ||rc − r2||d) (2)

where (||rc − r1||d − ||rc − r2||d) aims to ensure cluster-specific relation vector rc not far away
from the original relation vector r1 and r2; α controls the effect of this constraint, 0 ≤ α ≤ 1.
In this paper, we restrict ||h||2 ≤ 1, ||t||2 ≤ 1, ||r||2 ≤ 1, ||rc||2 ≤ 1 , ||hr,c||2 ≤ 1, ||tr,c||2 ≤ 1.
The model parameters consist of all elements of the entities’s embeddings vectors, relations’
embeddings vectors and relations’ projection matrices.

3.2 Training

To learning knowledge embeddings with our proposed models, we define a margin-based ranking
criterion as objective for training:

L =
∑

((h1,r1,t1);(h2,r2,t2))∈S

∑

((h
′
1,r1,t

′
1);(h

′
2,r2,t

′
2))∈S

′
(h1,r1,t1;h2,r2,t2)

[γ+

fr1,r2(h1, t1;h2, t2)− fr1,r2(h
′

1, t
′

1;h
′

2, t
′

2)]+

(3)

where [x]+
∆
= max(0, x); γ is a margin hyperparameter, γ > 0; S is the correct triples set; S

′

is the incorrect triples set, constructed according to Equation 4, is composed of correct triples
with either the head or tail entity replaced by a random entity, but not both at the same time.

S
′

(h1,r1,t1;h2,r2,t2)
= {(h

′

1, r1, t1); (h
′

2, r2, t2)|h1, h2 ∈ E}∪{(h1, r1, t
′

1); (h2, r2, t
′

2)|t1, t2 ∈ E} (4)

More specifically, during constructing incorrect triples, we follow the method described in [17],
which sets different probabilities for replacing the head or tail entity for corrupting the golden
triple. We denote this sampling method as “bern”. In addition, we also construct incorrect
triples by randomly corrupting the golden triple, which sets equal probability for replacing the
head or tail entity. We denote this sampling method as “unif”. In experiments, we will validate

5



 Hailun Lin et al. / Procedia Computer Science 108C (2017) 345–354 349Learning Entity and Relation Embeddings for Knowledge Resolution Lin, Liu, Wang, et al.

order singular value decomposition (SVD), factorizes a tensor into a core tensor multiplied by a
matrix along each dimension. RESCAL is a tensor factorization based method. Compared with
other tensor factorizations, the main advantage of RESCAL is that it can exploit a collective
learning effect when applied to relational data. RESCAL has shown very good results in
various canonical relational learning tasks such as link predication. TRESCAL is an extension
of RESCAL, which tries to encode rules into RESCAL. However, it focuses solely on a single
rule, i.e., the arguments of a relation should be entities of certain types.

The third category is the energy based approach, which assigns low energies to plausible
triples of a knowledge graph and employs neural network for learning. For example, Unstruc-
tured model [2] is proposed as a naive version of TransE by assigning all r = 0, leading to score
function fr(h, t) =∥ h − t ∥22. This model cannot consider differences of relations. Structured
embedding (SE) model [4] designs two relation-specific matrices for head and tail entities, i.e.,
Mr,1 and Mr,2, and defines the score functions as an L1 distance between two projected vectors,
i.e., fr(h, t) =∥ Mr,1h−Mr,2t ∥1. Since the model has two separate matrices for optimization,
it cannot capture precise relations between entities and relations. Neural tensor network (NTN)
model [15] represents entities in a d-dimensional vectors created separately by averaging pre-
trained word vectors, and then learns a d×d×m tensor describing the interactions between these
latent components in each of m relations. Meanwhile, the corresponding high complexity of
NTN may prevent it from efficiently applying on large-scale knowledge graphs. However, these
methods mainly focus on modeling single knowledge in continuous vector spaces, which ignore
the semantic relatedness modeling between knowledges. We intend to propose an comprehen-
sive translation method to automatically learning entity and relation feature representations in
continuous vector spaces, in order to measure the semantic relatedness of knowledge mentions
for knowledge resolution.

3 Embedding by Translating on Two Vector Spaces

In order to model the semantic correlations between knowledges, we propose ETransR mod-
el, which models entities and relations in distinct vector spaces, and performs translation in
the corresponding relation space, in order to measure the semantic relatedness of knowledge
mentions for knowledge resolution.

3.1 Embedding Model

In ETransR model, for each knowledge triple (h, r, t), h, t ∈ Rk represents entity embeddings
of h and t, respectively; r ∈ Rm represents relation embeddings of r. k denotes the entity
embeddings dimension, m denotes the relation embeddings dimension. It is noted that k and
m are not necessarily identical, i.e., k ̸= m. For each relation r, we set a projection matrix
Mr ∈ Rk×m, to project entity embeddings in entity space to relation space. Specifically, for a
triple (h, r, t), the embeddings h and t are first projected to the relation space with projection
matrix Mr. The entities embedding projections are denoted as hr and tr, where hr = hMr,
tr = tMr. We expect hr and tr can be connected by the relation embedding r on the relation
space with low error if (h, r, t) is a golden triple, and high error if (h, r, t) is a incorrect triple.
Thus we define a score function ||hr + r− tr||d to measure the plausibility that the knowledge
triple is incorrect, where d denotes L1 or L2-norm. Given two knowledge triples (h1, r1, t1) and
(h2, r2, t2), we define a score function to measure the dissimilarity between the two triples. The
score function is correspondingly defined as

fr1,r2(h1, t1;h2, t2) = ||(tr1 − hr1)− (tr2 − hr2) + (r1 − r2)||d (1)

4

Learning Entity and Relation Embeddings for Knowledge Resolution Lin, Liu, Wang, et al.

The score is expected to be lower for two similar triples and higher for two dissimilar triples. In
this paper, we restrict ||h||2 ≤ 1, ||t||2 ≤ 1, ||r||2 ≤ 1, ||hMr||2 ≤ 1, ||tMr||2 ≤ 1. The model
parameters consist of all elements of the entities’s embeddings vectors, relations’ embeddings
vectors and relations’ projection matrices.

ETransR learns a unique vector for each relation, which may be under-representative to fit
all knowledge triple mentions representing a unique knowledge triple, because these knowledge
triple mentions exhibit same semantic patterns. In order to better model these knowledge
triples, we extend ETransR by clustering same knowledge triple mentions into groups and
learning knowledge embeddings for each group, named as CETransR (cluster-based ETransR),
which follows the idea of piecewise linear regression [14].
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rate relation vector rc for each cluster and projection matrix Mr for each relation, respectively.
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two similar knowledge triples (h1, r1, t1) and (h2, r2, t2), the score function is correspondingly
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fr1,r2(h1, t1;h2, t2) = ||(tr1,c − hr1,c)− (tr2,c − hr2,c)||d + α(||rc − r1||d − ||rc − r2||d) (2)

where (||rc − r1||d − ||rc − r2||d) aims to ensure cluster-specific relation vector rc not far away
from the original relation vector r1 and r2; α controls the effect of this constraint, 0 ≤ α ≤ 1.
In this paper, we restrict ||h||2 ≤ 1, ||t||2 ≤ 1, ||r||2 ≤ 1, ||rc||2 ≤ 1 , ||hr,c||2 ≤ 1, ||tr,c||2 ≤ 1.
The model parameters consist of all elements of the entities’s embeddings vectors, relations’
embeddings vectors and relations’ projection matrices.

3.2 Training

To learning knowledge embeddings with our proposed models, we define a margin-based ranking
criterion as objective for training:

L =
∑

((h1,r1,t1);(h2,r2,t2))∈S

∑

((h
′
1,r1,t

′
1);(h

′
2,r2,t

′
2))∈S

′
(h1,r1,t1;h2,r2,t2)

[γ+

fr1,r2(h1, t1;h2, t2)− fr1,r2(h
′

1, t
′

1;h
′

2, t
′

2)]+

(3)

where [x]+
∆
= max(0, x); γ is a margin hyperparameter, γ > 0; S is the correct triples set; S

′

is the incorrect triples set, constructed according to Equation 4, is composed of correct triples
with either the head or tail entity replaced by a random entity, but not both at the same time.

S
′

(h1,r1,t1;h2,r2,t2)
= {(h

′

1, r1, t1); (h
′

2, r2, t2)|h1, h2 ∈ E}∪{(h1, r1, t
′

1); (h2, r2, t
′

2)|t1, t2 ∈ E} (4)

More specifically, during constructing incorrect triples, we follow the method described in [17],
which sets different probabilities for replacing the head or tail entity for corrupting the golden
triple. We denote this sampling method as “bern”. In addition, we also construct incorrect
triples by randomly corrupting the golden triple, which sets equal probability for replacing the
head or tail entity. We denote this sampling method as “unif”. In experiments, we will validate
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the impact that how the performance of our approach changes with the “unif” and “bern”
incorrect triple sampling methods.

The loss function (Equation 3) favors lower values for similar triples than for dissimilar
triples, and is thus a natural implementation of the intended criterion. It is worthwhile to note
that for a given entity, its embedding vector is the same when the entity appears as the head
or as the tail of a triple. The optimization is carried out by stochastic gradient descent (SGD)
in minibatch mode to minimize the above loss function. The set of golden triples are randomly
traversed multiple times. After a minibatch, the gradient is computed and the model param-
eters are updated. The detailed optimization procedure is described in Algorithm 1. It firstly
exploits the random procedure proposed in [3] to initialize all entities embeddings and relations
embeddings, and uses identity matrix to initialize all relation-specific projection matrices. All
the entities embedding vectors, relation embedding vectors and projection matrices are first
normalized during each main iteration. Then, it samples a small set of triples from the training
dataset, and adds these triples into the training triples of the minibatch. It is noted that, for
each such triple, a single incorrect triple is sampled. In the algorithm, the parameters are then
updated by taking a gradient step with constant learning rate. The algorithm is stopped based
on its performance on a validation dataset.

Algorithm 1 Model learning algorithm

Input: Correct triples set S, incorrect triples set S
′
, entities set E, relations set R, entity

embedding dimension k, relation embedding dimension m, margin γ, data bach size B;
Output: The well trained embedding model;
1: for all e ∈ E, r ∈ R do
2: e← uniform(− 6√

k
, 6√

k
);

3: r← uniform(− 6√
m
, 6√

m
);

4: Mr ← Ik×m;
5: end for
6: loop
7: norm(e), norm(r), norm(eMr);
8: Sbatch ← Sample(S,B);
9: Tbatch ← ∅;

10: for (h1, r1, t1), (h2, r2, t2) ∈ Sbatch do
11: (h

′

1, r1, t
′

1) ← Sample(S
′

(h1,r1,t1)
); // sample a incorrect triple according to (h1, r1, t1)

12: (h
′

2, r2, t
′

2) ← Sample(S
′

(h2,r2,t2)
); // sample a incorrect triple according to (h2, r2, t2)

13: Tbatch ← Tbatch ∪ {(h1, r1, t1), (h2, r2, t2), (h
′

1, r1, t
′

1), (h
′

2, r2, t
′

2)};
14: end for
15: Update knowledge embeddings w.r.t.

∑
(((h1,r1,t1);(h2,r2,t2));((h

′
1,r1,t

′
1);(h

′
2,r2,t

′
2)))∈Tbatch

∇[γ+

fr1,r2(h1, t1;h2, t2)− fr1,r2(h
′

1, t
′

1;h
′

2, t
′

2)]+;
16: end loop
17: return The trained model;

4 Experiments

In this section, we will evaluate the effectiveness of our proposed method for the knowledge
resolution task. We will: (1) compare the knowledge resolution accuracy of our method, with
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four state-of-the-art baseline methods; (2) show how the performance of our method changes
with respect to the increase of the number of the entity and relation embedding dimensions.

4.1 Experimental Settings

All experiments were conducted on a server running 64-bit Linux OS, with 16 core 2GHz
AMD Opteron(tm) 6128 Processors and 32GB RAM. In the experiments, we used two widely
used datasets: one from WordNet [12], and the other from Freebase [1]. For the dataset from
WordNet, we employ WN11 used in [15]. For the dataset from Freebase, we employ FB15K
used in [2]. WN11 contains 11 relation types and 38,696 related entities. FB15K contains 1,345
relation types and 14,951 related entities. They were randomly split into three groups, i.e.,
train data, valid data and test data. The details of these datasets are shown in Table 1.

Dataset WN11 FB15K
Entities 38,696 14,951
Relations 11 1,345
Train 112,581 483,142
Valid 2,609 50,000
Test 10,544 59,071

Table 1: Statistics of the datasets

As knowledge resolution aims to cluster knowledge triples into several disjoint groups, this
means it is to judge whether a given triple is correctly classified or not. This can be seen as a
classification task. Evaluation of classification needs negative labels. The dataset WN11 already
contains negative triples, which are obtained by corrupting by correct ones. For FB15K, we
construct the incorrect triples following the same way as [15]. The decision rule for classification
is as follows. For a triple (h, r, t), if the dissimilarity score obtained by fr is less than a relation-
specific threshold δr, then the triple is classified to be positive, and negative otherwise. δr is
determined by maximizing classification accuracy on the validation set.

4.2 Experimental Results and Analysis

Triple classification accuracy. For experiments of ETransR and CETransR, the learning
rate λ for stochastic gradient descent (SGD) is select among {0.001, 0.005, 0.01, 0.05, 0.1}, the
margin γ among {1, 2, 4, 8, 10}, the dimensions of entity embedding k, relation embedding m
among {10, 20, 40, 50, 60, 100, 200}, the batch size B among {20, 30, 70, 120, 420, 480, 960,
1440}, the α for CETransR among {0.001, 0.005, 0.01, 0.1}. The dissimilarity measure d is set
either to the L1-norm or L2-norm. All parameters are determined according to classification
accuracy on the validation set. Regarding the strategy of constructing negative labels, we use
“unif” to denote the traditional way of replacing head entity or tail entity with equal probability,
and use “bern” to denote reducing false negative labels by replacing head entity or tail entity
with different probabilities. Under the “unif” setting, the optimal configurations are: λ = 0.01,
γ = 1, k = 40, m = 40, B = 70, α = 0.1 and taking L1-norm as dissimilarity measure on WN18;
λ = 0.005, γ = 2, k = 60, m = 60, B = 180, α = 0.005 and taking L1-norm as dissimilarity
measure on FB15K. Under the “bern” setting, the optimal configurations are: λ = 0.01, γ = 2,
k = 50, m = 50, B = 420, α = 0.01 and taking L1 as dissimilarity measure on WN18; λ = 0.001,
γ = 2, k = 100, m = 100, B = 480, α = 0.01 and taking L1 as dissimilarity measure on FB15K.
For both datasets, we traverse all the training triples for 1000 rounds.
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exploits the random procedure proposed in [3] to initialize all entities embeddings and relations
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each such triple, a single incorrect triple is sampled. In the algorithm, the parameters are then
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In this section, we will evaluate the effectiveness of our proposed method for the knowledge
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four state-of-the-art baseline methods; (2) show how the performance of our method changes
with respect to the increase of the number of the entity and relation embedding dimensions.

4.1 Experimental Settings

All experiments were conducted on a server running 64-bit Linux OS, with 16 core 2GHz
AMD Opteron(tm) 6128 Processors and 32GB RAM. In the experiments, we used two widely
used datasets: one from WordNet [12], and the other from Freebase [1]. For the dataset from
WordNet, we employ WN11 used in [15]. For the dataset from Freebase, we employ FB15K
used in [2]. WN11 contains 11 relation types and 38,696 related entities. FB15K contains 1,345
relation types and 14,951 related entities. They were randomly split into three groups, i.e.,
train data, valid data and test data. The details of these datasets are shown in Table 1.
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Entities 38,696 14,951
Relations 11 1,345
Train 112,581 483,142
Valid 2,609 50,000
Test 10,544 59,071

Table 1: Statistics of the datasets

As knowledge resolution aims to cluster knowledge triples into several disjoint groups, this
means it is to judge whether a given triple is correctly classified or not. This can be seen as a
classification task. Evaluation of classification needs negative labels. The dataset WN11 already
contains negative triples, which are obtained by corrupting by correct ones. For FB15K, we
construct the incorrect triples following the same way as [15]. The decision rule for classification
is as follows. For a triple (h, r, t), if the dissimilarity score obtained by fr is less than a relation-
specific threshold δr, then the triple is classified to be positive, and negative otherwise. δr is
determined by maximizing classification accuracy on the validation set.

4.2 Experimental Results and Analysis

Triple classification accuracy. For experiments of ETransR and CETransR, the learning
rate λ for stochastic gradient descent (SGD) is select among {0.001, 0.005, 0.01, 0.05, 0.1}, the
margin γ among {1, 2, 4, 8, 10}, the dimensions of entity embedding k, relation embedding m
among {10, 20, 40, 50, 60, 100, 200}, the batch size B among {20, 30, 70, 120, 420, 480, 960,
1440}, the α for CETransR among {0.001, 0.005, 0.01, 0.1}. The dissimilarity measure d is set
either to the L1-norm or L2-norm. All parameters are determined according to classification
accuracy on the validation set. Regarding the strategy of constructing negative labels, we use
“unif” to denote the traditional way of replacing head entity or tail entity with equal probability,
and use “bern” to denote reducing false negative labels by replacing head entity or tail entity
with different probabilities. Under the “unif” setting, the optimal configurations are: λ = 0.01,
γ = 1, k = 40, m = 40, B = 70, α = 0.1 and taking L1-norm as dissimilarity measure on WN18;
λ = 0.005, γ = 2, k = 60, m = 60, B = 180, α = 0.005 and taking L1-norm as dissimilarity
measure on FB15K. Under the “bern” setting, the optimal configurations are: λ = 0.01, γ = 2,
k = 50, m = 50, B = 420, α = 0.01 and taking L1 as dissimilarity measure on WN18; λ = 0.001,
γ = 2, k = 100, m = 100, B = 480, α = 0.01 and taking L1 as dissimilarity measure on FB15K.
For both datasets, we traverse all the training triples for 1000 rounds.
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Experimental results on WN11 and FB15K are shown in Table 2. From Table 2 we can see
that: (1) ETransR and CETransR outperform baseline methods consistently. It indicates that
ETransR and CETransR find a better model to express the semantic features of entities and
relation types. (2) All the methods using “bern” sampling strategy perform better than using
“unif” strategy, especially on FB15K which have much more relation types. (3) CETransR
performs better than ETransR. It indicates that a fine-grained model may handle complicated
internal semantic correlations under each relation type better than coarse-grained model.

Approach
Accuracy

WN11 FB15K
TransE(unif) 0.759 0.796
TransE(bern) 0.759 0.802
TransH(unif) 0.777 0.790
TransH(bern) 0.788 0.802
TransR(unif) 0.855 0.817
TransR(bern) 0.859 0.839
CTransR(unif) 0.856 0.841
CTransR(bern) 0.857 0.845
ETransR(unif) 0.871 0.864
ETransR(bern) 0.873 0.869
CETransR(unif) 0.882 0.873
CETransR(bern) 0.885 0.876

Table 2: Evaluation results of triple classification

Some relation types classification results in FB15K tripes with CETransR are shown in
Table 3. From Table 3 we can find obvious patterns that: Category#1 is about team-play
position relation type, Category#2 is about award-winner relation type, Category#3 is about
file-writer relation type. It is obvious that by clustering we can learn more and fine-grained
knowledge embeddings, which can further help improve the performance of triple classification.

No. Relation types

1
/soccer/football player/position s
/soccer/football player/current team./sports/sports team roster/position
/sports/pro athlete/teams./sports/sports team roster/position

2
/award/award winning work/awards won./award/award honor/award winner
/award/award ceremony/awards presented./award/award honor/award winner
/award/award category/winners./award/award honor/award winner

3
/film/film/written by
/film/film/writer

Table 3: Evaluation results of triple classification

Impact of entity and relation embedding dimensions. Next we conducted experiments
over the FB15K dataset to illustrate how the performance of our CETransR method changes,
with respect to the increase of the number of entities and relation embedding dimensions, using
“bern” sampling strategy. Here the parameter settings are the same as those described in the
above experiments. The results are graphically depicted in Figure 2.

From Figure 2 we can see that: (1) The triple classification accuracy increases as the number
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of entity and relation embedding dimensions increases. It indicates that fine-grained entity and
relation embeddings are better for modeling knowledge complicated semantic relationships. (2)
When we fixed the relation embedding dimension m, the triple classification accuracy increases
as the number of entity embedding dimension k increases. But the increasing speed slows down,
vice versa. In addition, the accuracy decreases when the value of |k−m| increases. It indicates
that it should ensure the granularity of entity embeddings and relation embeddings, otherwise
it will cause distortion of entity and relation semantic representations.

         





































         





































Figure 2: The impact of the entity and relation embedding dimensions on the triple classification
of CETransR over the FB15K dataset

5 Conclusion

In this paper, we studied the problem of knowledge resolution. We proposed a knowledge repre-
sentation method to automatically learning the feature representations of entities and relations
in embedding spaces. This paper proposed ETransR and CETransR models, which embed
entities and relations in continuous vector spaces. These models aim to model complicated
semantic correlations between knowledge triple mentions, in order to improve the performance
of synonym and multi-sense knowledge mentions resolution. Experimental results show that
this method outperforms the state-of-the-art methods on the task of knowledge resolution.
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