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Abstract
Cross-validation (CV) is the most widely adopted
approach for selecting the optimal model. How-
ever, the computation of CV has high complexity
due to multiple times of learner training, making
it disabled for large scale model selection. In this
paper, we present an approximate approach to CV
based on the theoretical notion of Bouligand influ-
ence function (BIF) and the Nyström method for
kernel methods. We first establish the relationship
between the theoretical notion of BIF and CV, and
propose a method to approximate the CV via the
Taylor expansion of BIF. Then, we provide a novel
computing method to calculate the BIF for general
distribution, and evaluate BIF for sample distribu-
tion. Finally, we use the Nyström method to accel-
erate the computation of the BIF matrix for giving
the finally approximate CV criterion. The proposed
approximate CV requires training only once and is
suitable for a wide variety of kernel methods. Ex-
perimental results on lots of datasets show that our
approximate CV has no statistical discrepancy with
the original CV, but can significantly improve the
efficiency.

1 Introduction
Kernel methods, such as SVM, least square SVM and ker-
nel ridge regression (KRR), have been successfully solving
various problems in machine learning community. The per-
formance of these algorithms greatly depends on the selection
of the hyper-parameters. Therefore, model selection is foun-
dational to kernel methods and is also a challenging problem
in kernel methods.

There have been many interesting attempts to derive the
theoretical bounds of the generalization error or other tech-
niques to select the hyper-parameters [Liu and Liao, 2015;
Ding and Liao, 2014a; 2017; 2014b; Liu et al., 2013; 2017;
Li et al., 2017; Liu and Liao, 2014], but the most wide-
ly accepted model selection method is still the t-fold cross-
validation (t-CV). Unfortunately, t-CV requires training t
times, making it disabled for large scale model selection.

∗Corresponding author.

In this paper, we present an approach to approximating the
CV based on the notion of Bouligand influence function (BIF)
[Christmann and Messem, 2008] and Nyström method [Ding
and Liao, 2012] for a variety of kernel methods, including
LSSVM, KRR and SVM. Specifically, we first show how to
approximating the CV via the Taylor expansion of BIF. Then,
we provide a method to calculate the BIF for general distribu-
tion, and further evaluate BIF for sample distribution. Final-
ly, we use the Nyström method to improve the efficiency of
the computation of the BIF matrix, and give an approximate
CV criterion for model selection of kernel methods. The pro-
posed approximate CV requires training on the full data only
once, hence can significantly improve the efficiency. Experi-
mental results on 18 datasets show that our proposed CV can
not only give the comparable results as the state-of-the-art
methods, but also significantly improve the efficiency.

Related Work
In this subsection, we will introduce the related work about
the approximate CV methods of kernel methods and Bouli-
gand influence function.

Approximate CV of Kernel Methods
The extreme form of t-CV, where t equals the sample size,
is known as leave-one-out CV. For the sake of efficiency,
much work has been done to reduce the time complexity of
leave-one-out CV for some specific kernel-based learning al-
gorithms, see [Chapelle et al., 2002; Vapnik and Chapelle,
2000] for SVM, [Cawley and Talbot, 2007; Ding and Liao,
2011; Ding et al., 2018] for LSSVM, [Cawley and Talbot,
2004] for sparse LSSVM, [Cawley and Talbot, 2008] for
kernel logistic regression, and [Debruyne et al., 2008] for
kernel-based regression. There is much work on improving
the efficiency of the leave-one-out CV, but little work focuses
on the general t-CV. In our previous [Liu et al., 2014], we
present a strategy for approximating the general CV based
on the notion of Bouligand influence function (BIF) for some
kernel-based algorithms. However, there are two limitation-
s of this approximate method: 1) the loss function used in
kernel-based algorithms must be differentiable, hence it can
not be used for the non-differentiable case, such as the popu-
lar SVM; 2) we need to compute the inversion of the BIF ma-
trix of time complexity O(n3), which is not suitable for large
scale problem. To overcome these limitations, we propose
a novel method to smooth the non-differentiable loss based
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on the Huber function, and we use the Nyström method to
improve the efficiency of the computation of the BIF matrix,

Bouligand Influence Function
In the field of robust statistics, the notion of influence function
(IF) [Hampel et al., 1986] is introduced in order to analyze the
effects of outliers on the algorithm. Steinwart and Christman-
n [2008] showed that SVMs for classification and regression
have a bounded influence function under some assumption on
the loss function. Koh and Liang [2017] used the notion of
influence functions to trace a model’s prediction through the
learning algorithm and back to its training data. Christmann
and Messem [2008] generalized the notion of influence func-
tion, and introduced a new notion from Bouligand-derivatives
[Robinson, 1991] called Bouligand influence function (BIF),
which measures the impact of an infinitesimal small amoun-
t of contamination of the original distribution. They also
showed that SVMs have a bounded BIF with some assump-
tions on loss function. The focus of the above work lies in
deriving theoretical analysis of robust statistics for some k-
ernel methods, but little work aims at developing practical
procedures for model assessment.

The rest of the paper is organized as follows. We introduce
some notations and preliminaries in Section 2. In Section 3,
we present an approximate CV method via BIF. In Section
4, we use the Nyström method to accelerate the computation
of the BIF matrix, and give the final model section criterion.
In Section 5, we analyze the performance of our proposed
criterion compared with other state-of-the-art model selection
criteria. We end in Section 6 with conclusion.

2 Notations and Preliminaries
We consider the supervised learning where a learning algo-
rithm receives a sample of n labeled points

S = {zi = (xi, yi)}ni=1 ∈ (Z = X × Y)n,

where X denotes the input space and Y denotes the output
space, Y ⊂ R in the regression case and Y = {−1,+1}
in classification case. We assume S is drawn identically and
independently from a fixed, but unknown probability distri-
bution P on Z = X × Y .

Let κ : X × X → R be a kernel, that is, κ is symmetric
and for any finite set of points {xi}ni=1, the kernel matrix

K = [κ(xi,xj)]
n
i,j=1

is positive semidefinite. The reproducing kernel Hilbert space
(RKHS) Hκ associated with the kernel κ is defined to be the
completion of the linear span of the set of functions {Φ(x) =
κ(x, ·) : x ∈ X} with the inner product satisfying

〈κ(x, ·), κ(x′, ·)〉κ = κ(x,x′).

The operator fκ : P→ fκ(P) =: fκ,P is defined by

fκ,P = arg min
f∈Hκ

EPV (y, f(x)) + λ‖f‖2κ,

where V : Y × Y → R+ ∪ {0} is a loss function, λ is the
regularization parameter and ‖ · ‖κ is the norm in RKHS.

Let PS be the sample distribution associated with S , that is
PS(z) = 1

|S| if z ∈ S , otherwise 0, where |S| is the size of
S . When PS is used,

fκ,PS = arg min
f∈Hκ

1

|S|
∑
zi∈S

V (yi, f(xi)) + λ‖f‖2κ.

KRR, LSSVM and SVM are the special cases of such regu-
larized algorithms. For KRR and LSSVM, V is the square
loss:

V (y, f(x)) = (y − f(x))2;

For SVM, V is the hinge loss:

V (y, f(x)) = max(0, 1− yf(x)).

Let S1, . . . ,St be a random equipartition of S into t parts,
called folds. For simplicity, assume that n mod t, and hence,

|Si| = n/t =: m, i = 1, . . . , t.

Let PS\Si be the empirical distribution of the sample S with-
out the observations Si, that is PS\Si(z) = 1

n−m if z ∈ S\Si,
otherwise 0. Let fκ,PS\Si

be the hypothesis learned on all of
the data excluding Si. Then, the t-fold cross-validation (t-
CV) can be written as

t-CV :=
t∑
i=1

∑
zj∈Si

V
(
yj , fκ,PS\Si

(xj)
)
. (1)

3 Approximate CV with BIF
In this section, we will introduce the notion of BIF, and show
how to use BIF to approximate the CV.

3.1 Bouligand Influence Function (BIF)
Definition 1 ([Christmann and Messem, 2008]). Let P be a
distribution and fκ be an operator fκ : P → fκ,P, then the
Bouligand influence function (BIF) of fκ at P in the direc-
tion of a distribution Q 6= P is defined as

BIF(Q; fκ,P) = lim
ε→0

fκ,(1−ε)P+εQ − fκ,P
ε

.

Denote
Pε,Q = (1− ε)P + εQ.

One can see that BIF(Q; fκ,P) is the first order derivative
of fκ,Pε,Q at ε = 0. If BIF exist, the following first Taylor
expansion holds:

fκ,Pε,Q ≈ fκ,P + εBIF(Q; fκ,P). (2)

Note that

PS\Si =

(
1−

(
−1

t− 1

))
PS +

−1

t− 1
PSi ,

where PSi is the sample distribution corresponding to Si, that
is, PSi(x) = 1

m if x ∈ Si, otherwise 0. Thus, if taking

Q = PSi , ε =
−1

t− 1
,Pε,Q = PS\Si ,P = PS .
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Equation (2) gives

fκ,PS\Si
≈ fκ,PS +

1

1− t
BIF(PSi ; fκ,PS). (3)

Thus, the approximation of t-CV can be written as t-BIF :=

t∑
i=1

∑
zj∈Si

V

(
yj , fκ,PS (xj) +

BIF(PSi ; fκ,PS)(xj)

1− t

)
.

(4)

Note that t-BIF only depends on the calculation of fκ,PS and
BIF(PSi ; fκ,PS). Thus, if given the BIF(PSi ; fκ,PS), we
need to train the algorithm only once on the full data set S to
obtain fκ,PS for approximating the fκ,PS\Si

, i = 1, . . . , t.
The calculation of BIF at the continuous distribution P are

given as follows:
Theorem 1 ([Liu et al., 2014]). Let Hκ be the RKHS of a
bounded continuous kernel κ on X , and V (·, ·) a loss func-
tion and P be a distribution on Z , then the BIF of fκ in the
direction of a distribution Q 6= P is

BIF(Q; fκ,P)

= L−1
[
− 2λfκ,P − EQ [V ′(y, fκ,P(x))Φ(x)]

]
where the operator L : Hκ → Hκ is defined by

L(fκ) = 2λfκ + EP [V ′′(y, fκ,P(x))fκ(x)Φ(x)] .

In the next, we will evaluate the BIF of the sample distribu-
tion to approximate CV for square loss (KRR and LSSVM)
and Hinge loss (SVM).

3.2 Approximate CV of Square Loss
In the next, we will give an approximate CV for square loss.
From Theorem 1, we know that the operator L at sample dis-
tribution PS maps fκ,PS ∈ Hκ to

L(fκ,PS ) = 2λfκ,PS +
2

n

n∑
j=1

fκ,PS (xj)Φ(xj).

Thus, one can see that L(fκ,PS )(x1)
...

L(fκ,PS )(xn)

 = 2

[
λIn +

1

n
K

] fκ,PS (x1)
...

fκ,PS (xn)

 ,
(5)

where In = (1, . . . , n)T. Equation (5) indicates that the ma-
trix

2L := 2

[
λIn +

1

n
K

]
is the finite sample version of the operator L at PS .

From Theorem 1, it is now clear that BIF(PSi ; fκ,PS)(x1)
...

BIF(PSi ; fκ,PS)(xn)

 =

L−1

 [K ◦Ci]

m

 y1 − fκ,PS (x1)
...

yn − fκ,PS (xn)

− λ
 fκ,PS (x1)

...
fκ,PS (xn)


 ,

where Ci is an n × n matrix with [Ci]j,k = 1 if xk ∈ Si,
otherwise 0, ◦ is the entrywise matrix product.

Let B be the n× t matrix with

[B]j,i = BIF(PSi ; fκ,PS)(xj).

Therefore, according to Equation (3), we can obtain that

fκ,P(xj) ≈ fκ,PS (xj) +
[B]j,i
1− t

.

So, the t-CV for square loss can be approximated by

t-BIF :=
t∑
i=1

∑
zj∈Si

V

(
yj , fκ,PS (xj) +

[B]j,i
1− t

)
. (6)

3.3 Approximate CV of Hinge Loss
Note that the hinge loss V (y, f(x)) = max(0, 1− yf(x)) is
not differentiable, but according to Theorem 1, we know that
to obtain BIF we should compute the derivative of loss func-
tion. Thus, we propose to use a differentiable approximation
of it, inspired by the Huber loss:

V (y, t) =


0 if yt > 1 + h,

(1 + h− yt)2

4h
if |1− yt| ≤ h,

1− yt if yt < 1− h.
Note that if h → 0, the Huber loss converges to the hinge
loss. From the Huber loss, we know that

V ′(y, t) =


0 if yt > 1 + h,

−y(1 + h− yt)
2h

if |1− yt| ≤ h,

− y if yt < 1− h,

V ′′(y, t) =


0 if yt > 1 + h,

1

2h
if |1− yt| ≤ h,

0 if yt < 1− h.
We say that xi is a support vector if

|yi(fκ,PS (xi))− 1| < h.

Let us reorder the training points such that the first nsv points
are support vectors. Let I0 be the n× n diagonal matrix with
the first nsv entries being 1 and the others 0. Similar with the
square loss, it is easy to verity that

L := 2λIn +
1

2hn
KI0

is the finite sample version of the operator L at PS , and the
following equation holds: BIF(PSi ; fκ,PS)(x1)

...
BIF(PSi ; fκ,PS)(xn)

 =

L−1n

K ◦Ci

m

 V ′(yi, fκ,PS (x1))
...

V ′(yi, fκ,PS (xn))

− 2λ

 fκ,PS (x1)
...

fκ,PS (xn)


 .
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Let B be the n× t matrix with

[B]j,i = BIF(PSi ; fκ,PS)(xj).

Therefore, the t-CV for hinge loss can be approximated by

t-BIF :=
t∑
i=1

∑
zj∈Si

V

(
yj , fκ,PS (xj) +

[B]j,i
1− t

)
. (7)

Remark 1. In this subsection, we only give an approxi-
mate CV for Hinge loss. In fact, we can use this strategy
to approximate CV of other kernel-based algorithms of non-
differentiable, such as support vector regression (SVR) and
L1-SVM [Steinwart and Christmann, 2008].

4 Model Selection
According to the above discussion, we know that

t-BIF :=
t∑
i=1

∑
zj∈Si

V

(
yj , fκ,PS (xj) +

[B]j,i
1− t

)
(8)

is an efficient approximation of CV, which only need to train-
ing once. However, to obtain t-BIF, we need O(n3) to cal-
culate the inversion of L to obtain the BIF matrix B.

To accelerate the computation of the inversion of L, we
consider the use of the popular Nyström method . Suppose
we randomly sample c columns of the matrix K uniformly
without replacement. Let C denote the n × c martix formed
by theses columns. Let W be the c × c matrix consisting of
the intersection of these c columns with the corresponding c
rows of K. Without loss of generality, we can rearrange the
columns and rows of K based on this sampling such that:

K =

(
W,KT

21
K21,K22

)
,C =

(
W
K21

)
.

The Nyström method uses W and C to construct an approx-
imation K̃ of K defined by:

K̃ = CW+CT ≈ K, (9)

where W+ is the Moore-Penrose generalized inverse of W.
If we write the SVD of W = UWΣWUT

W, then

W+ = UWΣ+
WUT

W, (10)

where UW and ΣW is the singular values and singular vec-
tors of W.

Pluging Equation (10) into Equation (9), we can obtain that

K̃ = CUWΣ+
WUT

WCT

= CUW

√
Σ+

W︸ ︷︷ ︸
V

(
CUW

√
Σ+

W

)T
︸ ︷︷ ︸

VT

,

where we let V := CUW

√
Σ+

W ∈ Rn×c.
Note that we need to solve the inverse of L:

L =


λIn +

1

n
K for square loss

2λIn +
1

2hn
K for Hinge loss.

To reduce the computational cost, we intend to use the inverse
of L̃,

L̃ =


λIn +

1

n
K̃ for square loss

2λIn +
1

2hn
K̃ for Hunge loss,

as an approximation of the inverse of L.
According to the Woodbury formula:

(A + XYZ)
−1

= A−1 −A−1X(Y−1 + ZA−1X)−1ZA,

where A ∈ Rn×n, X ∈ Rc×c, Y ∈ Rc×c and Z ∈ Rc×n, it
is easy to verity that

L̃−1 =


In −V

(
nλIc + VTV

)−1
VT

λ
, square loss

In −V
(
4nλhIc + VTV

)−1
VT

2λ
, Hinge loss.

Note that VTV ∈ Rc×c, so only need O
(
c3 + nc2

)
to com-

pute the L̃−1.
Therefore, in this paper, we consider the use of the follow-

ing criterion for model selection:

t-FBIF :=
t∑
i=1

∑
zj∈Si

V

(
yj , fκ,PS (xj) +

[B̃]j,i
1− t

)
, (11)

where B̃ is the approximation of B with L̃ replace of L.

Time Complexity Analysis
To compute t-FBIF, we need O(c3 + nc2) to calculate the
inversion of L̃, and O(n2 + tnc) to calculate the B. Since
fκ,PS has been obtained in the training process. Thus, the
overall time complexity t-FBIF is

O(c3 + n2 + nc2 + tnc).

For the traditional t-CV method, the algorithm under con-
sideration need to be executed t times, hence the time com-
plexities are O(tn3), which is much larger than O(c3 + n2 +
nc2 + tnc).

5 Experiments
In this section, we will compare our proposed approximate
t-CV (t-FBIF) with the popular t-CV (t-CV), the efficient
leave-one-out CV (ELOO) [Cawley, 2006] and eigenvalue ra-
tio (ER) [Liu and Liao, 2015], t = 5, 10. The data sets are 18
publicly available data sets from LIBSVM Data1: 9 data sets
for classification and 9 data sets for regression. Experiments
are performed on a PC of 3.1GHz CPU with 4GB memory.
We use the Gaussian kernel

κ(x,x′) = exp(−‖x− x′‖22/2σ)

as our candidate kernel σ ∈ {2i, i = −15,−14, . . . , 14, 15}.
The regularization parameter

λ ∈ {2i, i = −15,−13, . . . , 13, 15}.
1http://www.csie.ntu.edu.tw/∼cjlin/libsvm.
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Classification 5-FBIF 5-CV 10-FBIF 10-CV ELOO ER

Diabetes 20.87 ± 1.67 20.00 ± 1.62 21.30 ± 1.95 19.62 ± 1.73 21.75 ± 2.12 21.94 ± 1.89
Australian 13.04 ± 1.85 12.56 ± 1.43 13.01 ± 1.76 12.23 ± 1.83 13.75 ± 1.93 13.35 ± 1.57

Heart 13.58 ± 3.85 13.34 ± 3.08 12.35 ± 3.65 12.12 ± 3.12 14.81 ± 3.12 13.34 ± 2.56
Ionosphere 4.12 ± 1.86 3.87 ± 0.94 4.23 ± 1.23 3.64 ± 0.91 4.56 ± 1.12 5.76 ± 1.23

Breast 2.44 ± 0.43 1.95 ± 0.32 2.93 ± 0.21 2.44 ± 0.43 4.54 ± 0.35 3.74 ± 0.28
German 27.33 ± 2.84 27.00 ± 2.31 28.00 ± 2.34 27.45 ± 2.53 27.43 ± 2.41 28.76 ± 3.45

Liver 24.04 ± 3.23 23.53 ± 3.12 23.43 ± 2.35 23.34 ± 2.12 30.77 ± 2.84 26.45 ± 3.23
Sonar 17.74 ± 2.34 16.13 ± 2.21 16.74 ± 2.54 16.13 ± 2.74 14.52 ± 2.42 14.43 ± 2.45

A2a 20.47 ± 1.23 20.59 ± 0.83 22.09 ± 1.15 20.62 ± 1.01 20.43 ± 1.32 20.12 ± 1.97
Regression 5-FBIF 5-CV 10-FBIF 10-CV ELOO ER

Bodyfat 9.46 ± 1.24(e-6) 9.12 ± 1.04(e-6) 9.32 ± 1.32(e-6) 9.05 ± 0.98(e-6) 1.43 ± 0.21(e-6) 1.53 ± 0.32(e-5)
Housing 11.72 ± 3.82 11.09 ± 3.45 11.34 ± 2.94 11.02 ± 3.21 11.34 ± 2.98 11.12 ± 2.46

Triazines 1.62 ± 0.29(e-2) 1.43± 0.24(e-2) 1.31± 0.28(e-2) 1.23± 0.24(e-2) 1.76± 0.23(e-2) 1.77 ± 0.28(e-2)
Mpg 6.31 ± 0.73 5.96 ± 0.87 6.23 ± 0.76 5.84 ± 0.82 6.23 ± 0.92 5.93 ± 0.75

Pyrim 1.55 ± 0.45(e-2) 1.53± 0.35(e-2) 1.52± 0.29(e-2) 1.51± 0.27(e-2) 1.58± 0.26(e-2) 1.73± 0.23(e-2)
Eunite2001 372.34 ± 96.34 324.34 ± 63.34 364.43 ± 91.24 334.82 ± 78.45 364.43 ± 97.23 364.86 ± 86.34

Mg 1.39 ± 0.01(e-2) 1.86± 0.01(e-2) 1.39± 0.02(e-2) 1.86± 0.01(e-2) 1.39± 0.01(e-2) 1.39± 0.01(e-2)
Cpusmall 9.56 ± 1.34 9.32 ± 1.56 9.53 ± 1.67 9.34 ± 1.40 12.93 ±1.45 9.93 ±1.25
Abalone 4.82 ± 0.45 4.08 ±0.31 4.43 ± 0.34 4.05 ± 0.28 5.95 ± 0.44 5.82 ±0.30

Table 1: Test errors for classification and test mean square errors for regression. Our methods: t-FBIF, compared methods: t-CV (t-CV),
efficient leave-one-out CV (ELOO) and eigenvalue ratio (ER), t=5,10.

Classification 5-FBIF 5-CV 10-BIF 10-CV ELOO ER

Australian 1.84 14.44 2.02 35.87 4.41 4.43
Heart 0.32 1.75 0.35 4.36 0.52 0.52
Ionosphere 0.45 2.93 0.50 6.62 0.84 0.84
Breast-cancer 2.45 13.07 2.65 32.09 3.89 3.90
Diabetes 2.87 17.19 3.01 42.24 5.24 5.27
German.numer 4.56 31.56 5.33 79.94 10.72 10.73
Liver-disorders 0.48 2.47 0.56 5.69 0.73 0.73
Sonar 0.23 1.16 0.30 2.68 0.32 0.33
A2a 45.43 256.77 54.54 761.95 140.72 144.63
Regression 5-FBIF 5-CV 10-BIF 10-CV ELOO ER

Bodyfat 0.21 1.59 0.23 3.77 0.42 0.42
Housing 0.83 5.87 0.98 14.99 1.77 1.76
Mpg 0.47 3.43 0.52 8.64 1.02 1.02
Pyrim 0.04 0.32 0.05 0.66 0.07 0.07
Triazines 0.56 0.91 0.67 2.19 0.25 0.25
Eunite2001 0.37 2.12 0.40 4.79 0.61 0.74
Mg 9.11 68.12 9.34 179.06 24.70 24.74
Cpusmall 80.12 486.24 87.08 1813.67 242.73 245.62
Abalone 205.67 2358.77 243.94 6632.53 974.92 987.11

Table 2: The computational time. Our methods: t-FBIF, compared methods: t-CV (t-CV), efficient leave-one-out CV (ELOO) and eigen-
value ratio (ER), t=5,10.
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The learning algorithm used in our experiments for regression
is KRR (square loss) and for classification is SVM (hinge
loss). For each data set, we run all methods 50 times with
randomly selected 70% of all data for training and the oth-
er 30% for testing. The use of multiple training/test partitions
allows an estimate of the statistical significance of differences
in performance between methods. Let Ai and Bi be the test
errors of methods A and B in partition i, and di = Bi − Ai,
i = 1, . . . , 50. Let d̄ and Sd be the mean and standard er-
ror of di. Then under t-test, with confidence level 95%, we
claim that A is significantly better than B (or equivalently B
significantly worse than A) if the t-statistic

d̄

Sd/
√

50
> 1.676.

All statements of statistical significance in the remainder refer
to a 95% level of significance.

5.1 Accuracy
The test errors for classification and test mean square errors
for regression are reported in Table 1. For our methods, we
set h = 0.05 and c = 0.1n. The parameters (if have) for the
compared algorithms follow the same experimental setting in
their papers. The elements are obtained as follows: For each
training set, we select the kernel parameter σ and the regular-
ization parameter λ by each criterion on the training set, and
evaluate the test error for the chosen parameters on the test
set. The results in Table 1 can be summarized as follows:
(a) Neither of t-CV and t-FBIF is statistically superior at

the 95% level of significance, t=5, 10. Thus, the quality
of our approximation is quite good;

(b) t-FBIF is better than ELOO. In particular, t-FBIF is
significantly better than ELOO on Heart, Breast, Liver,
Bodyfat, Triazines and Cpusmall, but only significantly
worse on Sonar.

(c) t-FBIF is better than ER. In particular, t-FBIF is sig-
nificantly better than ER on Ionosphere, Liver, Bodyfat,
Triazines and Abalone, but only significantly worse on
Sonar.

5.2 Efficiency
The running time is reported in Table 2 that can be summa-
rized as follows:
(a) The time cost of t-FBIF are much lower than that of

tCV. In particular, 5-FBIF and 10-FBIF are 5 (or
more) and 10 (or more) times faster than 5CV and 10CV
on all datasets, respectively. For large dataset, such as A-
balone and Cpusmall, 10-FBIF is 20 times faster than
10-CV. Thus, t-FBIF significantly improves the effi-
ciency of tCV for model selection;

(b) t-FBIF is 2 (or more) faster than ELOO and ER on all
datasets. For large dataset, t-FBIF is nearly 5 times
than ELOO and ER.

6 Conclusion
In this paper, we present an approximate CV method based
on the theoretical notion of BIF and Nyström method for a

variety of kernel methods. The proposed approximate CV
requires training on the full data only once, hence can signifi-
cantly improve the efficiency. Experimental results on 18 data
sets show that our approximate CV is 20 times more efficien-
cy (for large scale datasets) and has no statistical discrepancy
when compared to the original one. This is an interesting
attempt to apply the theoretical notion of BIF for practical
model selection.

Future work includes extending our criterion to other
kernel-based algorithms, such as support vector regression,
L1-SVM and kernel logistic regression.

Appendix: Proof of Theorem 1
Proof. From Theorem 2 in [Vito et al., 2004], we have

−2λfκ,P = EP[V ′(y, fκ,P(x))Φ(x)], (12)

Let fε = fκ,Pε,Q . Note that Pε,Q = (1− ε)P + εQ, hence we
can obtain that

−2λfε =(1− ε)EP[V ′(y, fε(x)Φ(x)]

+ εEQ[V ′(y, fε(x)Φ(x)].
(13)

Taking the first derivative on both sides of (13) with respect
to ε yields

−2λ
∂

∂ε
fε = (1− ε)EP

[(
∂

∂ε
fε(x)

)
V ′′(y, fε(x))Φ(x)

]
−

EP [V ′(y, fε(x))Φ(x)] +

εEQ

[(
∂

∂ε
fε(x)

)
V ′′(y, fε(x))Φ(x)

]
+

EQ [V ′(y, fε(x))Φ(x)] .
(14)

Setting ε = 0 and according to Equation (12), we have

2λ
∂

∂ε
fε|ε=0 + EP

[(
∂

∂ε
fε(x)|ε=0

)
V ′′(y, fP(x))Φ(x)

]
= EP [V ′(y, fP(x))Φ(x)]− EQ [V ′(y, fP(x))Φ(x)]

= −2λfP − EQ [V ′(y, fP(x))Φ(x)] .
(15)

By the definition of the operator L, we can obtain that

L
[ ∂
∂ε
fε|ε=0

]
= −2λfP − EQ [V ′(y, fP(x))Φ(x)] .

Acknowledgments
This work is supported in part by the National Key Research
and Development Program of China (2016YFB1000604), the
National Natural Science Foundation of China (No.6173396,
No.61673293, No.61602467) and the Excellent Talent In-
troduction of Institute of Information Engineering of CAS
(Y7Z0111107).

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2502



References
[Cawley and Talbot, 2004] Gavin Cawley and Nicola Talbot.

Fast leave-one-out cross-validation of sparse least-squares
support vector machines. Neural Networks, 17(10):1467–
1475, 2004.

[Cawley and Talbot, 2007] Gavin Cawley and Nicola Tal-
bot. Preventing over-fitting during model selection via
Bayesian regularisation of the hyper-parameters. Journal
of Machine Learning Research, 8:841–861, 2007.

[Cawley and Talbot, 2008] Gavin Cawley and Nicola Talbot.
Efficient approximate leave-one-out cross-validation for k-
ernel logistic regression. Machine Learning, 71(2-3):243–
264, 2008.

[Cawley, 2006] Gavin Cawley. Leave-one-out cross-
validation based model selection criteria for weighted LS-
SVMs. In Proceedings of the International Joint Con-
ference on Neural Networks (IJCNN 2006), pages 1661–
1668, 2006.

[Chapelle et al., 2002] Olivier Chapelle, Vladimir Vapnik,
Olivier Bousquet, and Sayan Mukherjee. Choosing mul-
tiple parameters for support vector machines. Machine
Learning, 46(1-3):131–159, 2002.

[Christmann and Messem, 2008] Andreas Christmann and
Arnout Van Messem. Bouligand derivatives and robust-
ness of support vector machines for regression. Journal of
Machine Learning Research, 9:915–936, 2008.

[Debruyne et al., 2008] Michiel Debruyne, Mia Hubert, and
Johan Suykens. Model selection in kernel based regression
using the influence function. Journal of Machine Learning
Research, 9:2377–2400, 2008.

[Ding and Liao, 2011] Lizhong Ding and Shizhong Liao.
Approximate model selection for large scale LSSVM.
Journal of Machine Learning Research - Proceedings
Track, 20:165–180, 2011.

[Ding and Liao, 2012] Lizhong Ding and Shizhong Liao.
Nyström approximate model selection for LSSVM. In
Proceedings of the 16th Pacific-Asia Conference (PAKDD
2012), pages 282–293, 2012.

[Ding and Liao, 2014a] Lizhong Ding and Shizhong Liao.
Approximate consistency: Towards foundations of ap-
proximate kernel selection. In Proceedings of the Euro-
pean Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Database (ECML P-
KDD), pages 354–369. Springer, Berlin, 2014.

[Ding and Liao, 2014b] Lizhong Ding and Shizhong Liao.
Model selection with the covering number of the ball of
RKHS. In Proceedings of the 23rd ACM International
Conference on Information and Knowledge Management
(CIKM 2014), pages 1159–1168, 2014.

[Ding and Liao, 2017] Lizhong Ding and Shizhong Liao. An
approximate approach to automatic kernel selection. IEEE
Transactions on Cybernetics, 47(3):554–565, 2017.

[Ding et al., 2018] Lizhong Ding, Shizhong Liao, Yong Liu,
Peng Yang, and Xin Gao. Randomized kernel selection

with spectra of multilevel circulant matrices. In Proceed-
ings of the 32nd AAAI Conference on Artificial Intelligence
(AAAI 2018), 2018.

[Hampel et al., 1986] Frank Hampel, Elvezio Ronchetti, Pe-
ter Rousseeuw, and Werner Stahel. Robust statistics: the
approach based on influence functions. Wiley, New York,
1986.

[Koh and Liang, 2017] PangWei Koh and Percy Liang. Un-
derstanding black-box predictions via influence functions.
In Proceedings of the 34 th International Conference on
Machine Learning (ICML 2017), pages 1885–1894, 2017.

[Li et al., 2017] Jian Li, Yong Liu, Hailun Lin, Yinliang Yue,
and Weiping Wang. Efficient kernel selection via spectral
analysis. In Proceedings of the 26th International Joint
Conference on Artificial Intelligence (IJCAI 2017), pages
2124–2130, 2017.

[Liu and Liao, 2014] Yong Liu and Shizhong Liao. Prevent-
ing over-fitting of cross-validation with kernel stability.
In Proceedings of the European Conference on Machine
Learning and Principles and Practice of Knowledge Dis-
covery in Databases (ECML PKDD 2014), pages 290–
305, 2014.

[Liu and Liao, 2015] Yong Liu and Shizhong Liao. Eigen-
values ratio for kernel selection of kernel methods. In Pro-
ceedings of the Twenty-Ninth AAAI Conference on Artifi-
cial Intelligence (AAAI 2015), pages 2814–2820, 2015.

[Liu et al., 2013] Yong Liu, Shali Jiang, and Shizhong Liao.
Eigenvalues perturbation of integral operator for kernel s-
election. In Proceedings of the 22nd ACM International
Conference on Information and Knowledge Management
(CIKM 2013), pages 2189–2198, 2013.

[Liu et al., 2014] Yong Liu, Shali Jiang, and Shizhong Liao.
Efficient approximation of cross-validation for kernel
methods using Bouligand influence function. In Proceed-
ings of The 31st International Conference on Machine
Learning (ICML 2014 (1)), pages 324–332, 2014.

[Liu et al., 2017] Yong Liu, Shizhong Liao, Hailun Lin, Yin-
liang Yue, and Weiping Wang. Infinite kernel learning:
generalization bounds and algorithms. In Proceedings of
the Thirty-First AAAI Conference on Artificial Intelligence
(AAAI 2017), 2017.

[Robinson, 1991] Stephen Robinson. An implicit-function
theorem for a class of nonsmooth functions. Mathematics
of Operations Research, 16:292–309, 1991.

[Steinwart and Christmann, 2008] Ingo Steinwart and An-
dreas Christmann. Support vector machines. Springer Ver-
lag, 2008.

[Vapnik and Chapelle, 2000] Vladimir Vapnik and Olivier
Chapelle. Bounds on error expectation for support vector
machines. Neural Computation, 12(9):2013–2036, 2000.

[Vito et al., 2004] Ernesto De Vito, Lorenzo Rosasco, An-
drea Caponnetto, Michele Piana, and Alessandro Verri.
Some properties of regularized kernel methods. The Jour-
nal of Machine Learning Research, 5:1363–1390, 2004.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2503


