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Abstract— Vector-valued regularized least-squares algo-
rithm (RLS) on vector-valued reproducing kernel Hilbert
space (RKHS) has recently received increasing interest in
various machine learning problems such as multi-task learn-
ing and multi-view learning, but error analysis of the vector-
valued RLS is still widely unknown. In this paper, we derive
an error bound of the vector-valued RLS, which consists
of two parts: sample error bound and approximation error
bound. We first present the sample error bound through
the concentration inequalities of function-valued random
variables. Under a suitable assumption of the approximation
error, we propose the total error bound with the derived
sample error bound. Furthermore, together with a Ysybakov
function, we also present an error bound of the multi-class
classification problem in terms of the error bound derived
for the vector-valued RLS.

Keywords: Consistency, vector-valued regularized least-squares
algorithm, multi-class classification, multi-view learning

1. Introduction
The regularized least-squares algorithm (RLS) on a re-

producing kernel Hilbert space (RKHS) of real-valued func-
tions (i.e., when the output space is equal to R) has
been extensively studied in the literature [1]–[6]. In [1],
a covering number technique is used to obtain the error
bounds expressed in terms of suitable complexity measures
of the regression function. In [2], the covering techniques
are replaced by estimates of integral operators through
concentration inequalities of vector-valued random variables.
In [3], entropy methods are used to establish the upper
bounds. In [4], [6], the eigenvalues of the integral operator
are used as a complexity measure for error analysis.

Following the development of multi-task learning and
multi-view learning methods, the vector-valued RLS on a
vector-valued RKHS (i.e., when the output space is equal to
Rd) has recently attracted considerable attention in the ma-
chine learning community. A study of vector-valued learning
with kernel methods is started in [7] where the vector-
valued RKHS is adopted and the representer theorem for
Tikhonov regularization is generalized to the vector-valued
setting. In [8], [9], they derive conditions which ensure that
the operator-valued kernel is universal (which means that on

every compact subset of the input space, every continuous
function with values in output space can be uniformly
approximated by sections of the kernel). Instead of studying
operator-valued kernels and their corresponding RKHS from
the perspective of extending Aronszajn’s pioneering work
[10] to the vector or function valued, Kadri et al. [11]
target at advancing the understanding of feature spaces
associated with operator-valued kernels. In [6], they study
the asymptotic performances of the vector-valued RLS for a
suitable class of priors and a assumption that the regression
function belong to the RKHS.

Although the vector-valued RLS has recently attracted
considerable attention, its error analysis is still widely un-
known. In this paper, based on the fact that scalar positive de-
fined kernels can be extended to cope with vector-functions
using operator-valued positive kernels, we extend the results
of error bounds of the scalar RLS to the vector-valued RLS.
We first present finite sample error bounds for the vector-
valued RLS both in vector-valued RKHS norm and square
integrable norm through the concentration inequalities of
function-valued random variables. Then, with the derived
sample error bounds, we propose total error bounds under a
suitable assumption of approximation error. Furthermore, we
consider to use the vector-valued RLS for multi-class clas-
sification. Together with a Ysybakov function, we apply the
error bounds derived for the vector-valued RLS regression
to the multi-class classification problem for error analysis.

The rest of the paper is organized as follows. In Section 2
we consider the vector-valued learning and present the setup
of the problem, as well as the basic notions behind the theory
of vector-valued RKHS. In Section 3 we present the error
bounds for vector-valued RLS regression and discuss their
consequences. In Section 4 we generalize the above results
to multi-class classification problem. We end in Section 5
with conclusion.

2. Preliminaries and Notations
The problem of supervise learning amounts to inferring

an unknown functional relation given a finite training set
of examples z = {(xi, yi)}ni=1. More precisely, the training
examples are assumed to be identically and independently
distributed according to a fixed, but unknown probability
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measure ρ(x, y) on Z = X ×Y , where usually Y ⊆ R. Here
we are interested in vector-valued learning where Y ⊆ Rd.
A learning algorithm is a map from a training set z to an
estimator fz : X → Y .

A good estimator should generalize to future examples,
this translates into the requirement of having small expected
risk

E(f) =
∫
X×Y

∥y − f(x)∥2ddρ(x, y),

where ∥·∥d denotes the euclidean norm in Rd. The minimizer
of the expected risk over the space of all the measurable Y-
valued functions on X is the regression function

fρ(x) =

∫
Y
ydρ(y|x), x ∈ X ,

where ρ(y|x) is the conditional distribution at x induced by
ρ. Thus the quality of an estimator fz can be assessed by
∥fz − fρ∥ρ, where

∥fz − fρ∥ρ =

{∫
X
∥fz(x)− fρ(x)∥2ddρX (x)

}1/2

,

ρX is the marginal distribution of ρ on X .

2.1 Vector-Valued RKHS
In the following we will introduce the vector-valued

RKHS. You may refer to [7] for further details and refer-
ences.

Let YX denote the vector space of all functions f : X →
Y , L(Y) the Banach space of bounded linear operators on
Y . Note that for Y ⊆ Rd, the space L(Y) is the space of
d× d matrices. A function

K : X × X → L(Y)

is said to be an operator valued positive definite kernel
if for each pair (x, y) ∈ X × X , K(x, y) ∈ L(Y) is a self-
adjoint operator and

n∑
i,j=1

⟨yi,K(xi, xj)yj⟩d ≥ 0

for every finite set of examples {(xi, yi)}ni=1 ⊂ X × Y .
For each x ∈ X and y ∈ Y , we form a function Kxy =

K(·, x)y ∈ YX defined by

(Kxy)(t) = K(t, x)y for all t ∈ X .

Similarly to the scalar case, it can be shown that for any
given operator valued kernel K, a unique RKHS HK can
be defined by considering the completion of the space

span

{
n∑

i=1

Kxiyi

∣∣∣ xi ∈ X , yi ∈ Y

}

with respect to the norm ∥ ·∥K induced by the inner product

⟨f, g⟩K =
n∑

i,j=1

⟨K(xj , xi)βi, wj⟩d,

for any

f, g ∈ span

{
n∑

i=1

Kxiyi

∣∣∣ xi ∈ X , yi ∈ Y

}
with f =

∑n
i=1 K(·, xi)βi and g =

∑n
i=1 K(·, xi)wi.

By definition, the kernel K has the following reproducing
property, for all y ∈ Y and x ∈ X ,

⟨f(x), y⟩d = ⟨f,Kxy⟩K for all f ∈ HK . (1)

Denote κ =
√
supx∈X ∥K(x, x)∥. Then (1) implies that

∥f∥∞ := sup
x∈X

∥f(x)∥d ≤ κ∥f∥K (2)

for all f ∈ HK .
In this paper, we assume that κ < ∞ and for some D ≥ 0,

∥y∥d ≤ D almost surely, thus ∥fρ∥ρ ≤ D.

2.2 Vector-Valued RLS Algorithm
In this subsection, we will introduce the vector-valued

RLS on the vector-valued RKHS. In this framework the hy-
pothesis space HK is a given vector-valued RKHS induced
by the operator valued positive definite kernel K, and for
any λ > 0, the vector-valued RLS estimator fz,λ is defined
as the solution of the minimizing problem

fz,λ = argmin
f∈HK

{
1

n

n∑
i=1

∥f(xi)− yi∥2d + λ∥f∥2K

}
. (3)

We know from [7], [12] that the solution fz,λ uniquely
exists, and is given by

fz,λ =

(
1

n
S∗
xSx + λI

)−1
1

n
S∗
xy, (4)

where the operator S∗
x : Yn → HK is given by

S∗
xy = S∗

x(y1, . . . , yn) =
n∑

i=1

Kxiyi,

and the operator S∗
xSx : HK → HK is given by

S∗
xSxf =

n∑
i=1

Kxif(xi).

Our goal is to understand how fz,λ approximates fρ and
how the decay of the regularization parameter λ = λ(n)
leads to convergence rates. For the scalar RLS, the rates
for this approximation in L2

ρX
(∥fz,λ − fρ∥ρ) have been

considered in [1], [13]–[16], and the approximation in the
space HK (∥fz,λ−fρ∥K) has been shown in [2], [14]. In this
paper, we extend the results of the scalar RLS to the vector-
valued RLS. Furthermore, we generalize our results of the
vector-valued RLS to multi-class classification problem for
error analysis.
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3. Error Bounds for Vector-Valued RLS
Regression

A data-free limit of (3) is

fλ = argmin
f∈HK

{
∥f − fρ∥2ρ + λ∥f∥2K

}
. (5)

By [1], we know that the solution of (5) is

fλ = (LK + λI)−1LKfρ, (6)

where I is identity operator and LK : L2 → HK is an
integral operator defined by

(LKf)(t) =

∫
X
K(t, x)f(x)dρX (x).

We will deal with the error ∥fz,λ − fρ∥K by dividing it
into two parts ∥fz,λ−fλ∥K and ∥fλ−fρ∥K . The first term,
∥fz,λ − fλ∥K , is called the sample error which is made by
approximating fλ through a finite training set z. The second
term, ∥fλ − fρ∥K , depends on the choice of HK but is
independent of sampling, which is called the approximation
error.

Theorem 1: Let z = {(xi, yi)}ni=1 be randomly drawn
according to ρ, for all 0 < δ < 1, with confidence 1− δ,

∥fz,λ − fλ∥K ≤ 6κD log(2/δ)√
nλ

. (7)

Proof: See in Appendix.A.
For the scalar RLS, the error bounds ∥fz,λ−fλ∥K have been
given in [2], [14]. In [14], they show that with confidence
1− δ,

∥fz,λ − fλ∥K ≤ c1 log(4/δ)√
nλ

(
30 +

c2a

3
√
nλ

)
,

in [2], with confidence 1− δ,

∥fz,λ − fλ∥K ≤ c3 log(2/δ)√
nλ

,

where c1, c2 and c3 are some constants.
To the best of our knowledge, the error bound ∥fz,λ −

fλ∥K for the vector-valued RLS on the vector-valued RKHS
had never been given before. Our result fills this gap. By
theorem 1, we find that the convergence rate of vector-valued
RLS is O( 1√

nλ
) as the same as that of the scalar RLS in

[2], [14].
Using Theorem 1, we will prove our total error estimate

in the ∥ · ∥K norm.
Theorem 2: Let z = {(xi, yi)}ni=1 be randomly drawn

according to ρ, and assume the approximation error ∥fλ −
fρ∥K satisfies

∥fλ − fρ∥K ≤ cλβ ,

where c > 0 and β > 0. Then, for any 0 < δ < 1, with
confidence 1− δ,

∥fz,λ − fρ∥K ≤ 2 log(2/δ)

{
3κD√
nλ

+ cλβ

}
. (8)

Setting λ = (2κD)
1

β+1
(
1
n

) 1
2(β+1) , we have

∥fz,λ − fρ∥K ≤ 4c log(2/δ)(2kD)
β

β+1

(
1

n

) β
2(β+1)

. (9)

Proof: Note that

∥fz,λ − fρ∥K ≤ ∥fz,λ − fλ∥K + ∥fλ − fρ∥K .

By Theorem 1 and the assumption ∥fλ− fρ∥K ≤ cλβ , with
confidence 1− δ,

∥fz,λ − fρ∥K ≤ 2 log(2/δ)
3κD√
nλ

+ cλβ .

Since 0 < δ < 1, we have 2 log(2/δ) > 1. Therefore,

∥fz,λ − fρ∥K ≤ 2 log(2/δ)

{
3κD√
nλ

+ cλβ

}
.

Minimize the 3κD√
nλ

+ cλβ over λ > 0, and we obtain

λ = (2κD)
1

β+1

(
1

n

) 1
2(β+1)

.

With this choice of λ, we can obtain Theorem 2.
Remark 1: If fρ is in the range of Lr

K and 1
2 < r ≤ 1, the

approximation error ∥fλ − fρ∥K ≤ λr− 1
2 ∥L−1

K fρ∥ρ, which
implies that the assumption ∥fλ − fρ∥K ≤ cλβ in Theorem
2 is reasonable.

For the scalar RLS, if fρ is in the range of LK , [14] show
that

∥fz,λ − fρ∥K ≤ c4

(
(log(4/δ))2

n

) 1
6

.

In [2], they improve the above result and obtain that

∥fz,λ − fρ∥K ≤ c5 log(2/δ)

(
1

n

) 1
6

.

For the vector-valued RLS, if we also assume that fρ is in
the range of LK as the same as that of scalar RLS in [2],
[14], then

∥fλ − fρ∥K ≤ λ
1
2 ∥L−1

K fρ∥ρ.

Therefore, the β in theorem 2 is equal 1
2 . In this case, by

Theorem 2, we have

∥fz,λ − fρ∥K ≤ c6 log(2/δ)

(
1

n

) 1
6

,

the convergence rate of the vector-valued RLS is equal to
that of the scalar RLS. When we consider the extreme case,
that is, β → ∞, the convergence rate is O( 1√

n
).

Using Theorem 2 and ∥fz,λ − fρ∥ρ ≤ κ∥fz,λ − fρ∥K , it
is easy to obtain the following corollary.

Corollary 1: Let z = {(xi, yi)}ni=1 be randomly drawn
according to ρ, and assume ∥fλ−fρ∥K ≤ cλβ , where c > 0
and β > 0. Then, for any 0 < δ < 1, with confidence 1− δ,

∥fz,λ − fρ∥ρ ≤ 2κ log(2/δ)

{
3κD√
nλ

+ cλβ

}
. (10)
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Setting λ = (2κD)
1

β+1
(
1
n

) 1
2(β+1) , we have

∥fz,λ − fρ∥ρ ≤ 4κc log(2/δ)(2kD)
β

β+1

(
1

n

) β
2(β+1)

. (11)

In [6], under the assumptions that ρ ∈ P(b, c) (see
Definition 1 in [6]), fρ ∈ HK and the eigenvalues tn of
the integral operator LK satisfy

α ≤ nbtn ≤ β,

they obtain that

lim
τ→∞

lim sup
n→∞

sup
ρ∈P (b,c)

Pz∼ρn

[
∥fz,λ − fρ∥ρ > τ

(
1

n

) bc
bc+1

]
= 0,

where b < ∞ and 1 ≤ c ≤ 2. The above assumptions may
be too strong and therefore may not be satisfied in general
cases. In this paper, we only assume that

∥fλ − fρ∥K ≤ cλβ ,

and if β ≥ 2bc
1−bc and bc < 1, by theorem 2, our result

yields faster convergence rate. In addition, our proof is much
simpler than theirs.

4. Application to Multi-Class Classifica-
tion

In multi-class classification the examples belong to one of
d (d > 2) classes. Let ρ(k|x) be the conditional probability
for each class, k = 1, . . . , d. A classifier is a function c :
X → {1, 2, . . . , d}, assigning each input point to one of the
d classes.

The classification performance can be measured via the
misclassification probability

R(c) = P[c(x) ̸= y].

It is easy to check that the minimizer of the misclassification
probability is given by the Bayes rule, defined as

b(x) = argmax
k∈{1,...,d}

ρ(k|x).

In order to use the vector-valued RLS for multi-class
classification, we define a coding, that is, a one-to-one map

M : {1, 2, . . . , d} → Y

where Y = {l1, . . . , ld} ⊂ Rd. In this paper, we
define the coding as l1 = (1,−1,−1, . . . ,−1), l2 =
(−1, 1,−1, . . . ,−1),. . . , ld = (−1,−1,−1, . . . , 1).

We use superscripts to index vector components, so that
the squared loss can be written as

∥l − f(x)∥2d =

d∑
j=1

(lj − f j(x))2.

Since the coding is one-to-one, the probability for each
coding vector lk is given by ρ(k|x). The expected risk

E(f) =
∫
X×Y

∥y − f(x)∥2ddρ(y|x)dρX (x) =∫
X

d∑
k=1

∥lk − f(x)∥2dρ(k|x)dρX (x),

is minimized by the regression function fρ, which is ex-
pressed as

fρ(x) = (f1
ρ (x), . . . , f

d
ρ (x)) =

∫
Y
ydρ(y|x) =

d∑
k=1

lkρ(k|x).

We can write the i-th component of the regression function
as

f i
ρ(x) =

d∑
k=1

likρ(k|x) =
d∑

k=1,k ̸=i

−ρ(k|x) + ρ(i|x) =

d∑
k=1

−ρ(k|x) + ρ(i|x) + ρ(i|x) = 2ρ(i|x)− 1,

since
∑d

k=1 ρ(k|x) = 1. By the definition of the Bayes rule,
we have

b(x) = argmax
j∈{1,...,d}

f j
ρ(x). (12)

The above calculation is simple, but shows us the useful
facts: First, the vector-valued RLS algorithm approximating
the regression function can be used to learn the Bayes rule
for a multi-class problem. Second, once we obtained an
estimator for the regression function, Equation (12) shows
that the natural way to define a classification rule is to take
the argmax of the components of the estimator.

Based on the above idea, the vector-valued RLS estimator
fz,λ for multi-class is defined as the solution of the mini-
mization problem

fz,λ = argmin
f∈HK

{
1

n

n∑
i=1

∥f(xi)− l̄i∥2d + λ∥f∥2HK

}
. (13)

The classifier is given by

c(x) = argmax
i∈{1,...,d}

f i
z,λ(x).

Instead of estimating the error

Eρ(I(c(x) ̸= b(x))),

where I(c(x) ̸= b(x)) = 1 if c(x) ̸= b(x), I(c(x) ̸= b(x)) =
0 otherwise, in this paper, for applying the previously
derived results derived for vector-valued RLS to multi-class
classification problems for error analysis, we consider to
estimate

∥sgn(fz,λ)− sgn(fρ)∥ρ,
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where sgn(f) = (sgn(f1), . . . , sgn(fd)), sgn(f i(x)) = 1 if
f i(x) ≥ 0 and sgn(f i(x)) = −1 otherwise.

Remark 2: If sgn(fz,λ) approximates sgn(fρ), it implies
that c(x) approximates b(x).

4.1 An Error Bound for Multi-Class Classifi-
cation

In order to estimate the error bound ∥sgn(fz,λ) −
sgn(fρ)∥ρ, we first denote the misclassification set of
the classifier sgn(fz,λ) as

Xfz,λ
=

{
x ∈ X

∣∣∃i ∈ {1, 2, . . . , d},

sgn(f i
z,λ)(x) ̸= sgn(f i

ρ)(x),
}
.

Note that

∥sgn(fz,λ)− sgn(fρ)∥2ρ =∫
X\Xfz,λ

∥sgn(fz,λ)(x)− sgn(fρ)(x)∥2ddρX (x)+∫
Xfz,λ

∥sgn(fz,λ)(x)− sgn(fρ)(x)∥2ddρX (x) =

0 +

∫
Xfz,λ

∥sgn(fz,λ)(x)− sgn(fρ)(x)∥2ddρX (x).

Note that∫
Xfz,λ

∥sgn(fz,λ)(x)− sgn(fρ)(x)∥2ddρX (x) ≤

4d · ρX (Xfz,λ
),

so we have

∥sgn(fz,λ)− sgn(fρ)∥2ρ ≤ 4d · ρX (Xfz,λ
), (14)

where ρX is the marginal distribution of ρ on X .
In the following, we show that sgn(fz,λ) approximates

sgn(fρ) well if fz,λ is a good approximation of fρ. To this
end, we introduce a function motivated by the Tsybakov
condition [17] with noise exponent q (0 < q ≤ ∞) : for
some constant cq > 0, ∃i ∈ {1, 2, . . . , d},

ρX
({

x ∈ X
∣∣0 < |f i

ρ(x)| ≤ cqt
})

≤ tq. (15)

Definition 1: The Tsybakov function associated with
the probability distribution ρ on X ×Y is defined to be the
function S = Sρ : [0, 1] → [0, 1] given by, ∃i ∈ {1, 2, . . . , d}

S(C) = ρX
({

x ∈ X
∣∣f i

ρ(x) ∈ [−C,C],
})

, (16)

Let 0 < q < ∞, we define the q-coefficient as follows (if
it is finite)

aq = aq,ρ = sup
0<C<1

S(C)

Cq
. (17)

By the above definitions, it is easy to verify that for 0 <
q < ∞, the Tsybakov condition (15) holds if and only if
aq < ∞ and S(0) = 0. We say that ρ has (hard) margin
τ > 0 if S(L) ≡ 0 when L ∈ [0, τ).

Proposition 1: Let z = {(xi, yi)}ni=1 be randomly drawn
according to ρ having q-coefficient aq < ∞ for some 0 <
q < ∞, then

∥sgn(fz,λ)− sgn(fρ)∥2ρ ≤ 4d · aqκq∥fz,λ − fρ∥qK .
Proof: By the definition of misclassification set Xfz,λ

,
∃i ∈ {1, 2, . . . , d},

Xfz,λ
=

{
x ∈ X

∣∣sgn(f i
z,λ)(x) ̸= sgn(f i

ρ)(x)
}
,

we know that for x ∈ Xfz,λ
, ∃i ∈ {1, 2, . . . , d} such that

sgn(f i
z,λ)(x) ̸= sgn(f i

ρ)(x).

Therefore, ∃i ∈ {1, 2, . . . , d},

|f i
ρ(x)| ≤|f i

z,λ(x)− f i
ρ(x)| ≤

∥fz,λ(x)− fρ(x)∥d ≤
∥fz,λ − fρ∥∞.

This means that the set Xfz,λ
is a subset of (or equal to){

x ∈ X
∣∣f i

ρ ≤ ∥fz,λ − fρ∥∞, ∃i ∈ {1, 2, . . . , d}
}
.

By the definition of Tsybakov function, we have

ρ(Xfz,λ
) ≤ S(∥fz,λ − fρ∥∞).

By (14) and ∥f∥∞ ≤ κ∥f∥K , we have

∥sgn(fz,λ)− sgn(fρ)∥ρ ≤
4d · S(∥fz,λ − fρ∥∞) ≤
4d · S(κ∥fz,λ − fρ∥K).

According to the definition of q-coefficient, it is easy to
verify that

S(κ∥fz,λ − fρ∥K) ≤ aq(κ∥fz,λ − fρ∥K)q.

This verifies the desired bound for ∥sgn(fz,λ)− sgn(fρ)∥ρ.

This proposition shows that sgn(fz,λ) approximates
sgn(fρ) well if fz,λ is a good approximation of fρ in ∥·∥K .
When ρ has hard margin τ > 0, S(C) = 0 for C < τ ,
it is sufficient to consider the case ∥fz,λ − fρ∥K ≥ τ

κ in
Proposition 1.

Combining Theorem 2 and Proposition 1 yields the fol-
lowing result.

Corollary 2: Let z = {(xi, yi)}ni=1 be randomly drawn
according to ρ having aq < ∞ for some 0 < q < ∞ and
∥fz,λ − fρ∥ ≤ cλβ . Setting

λ = (2κD)
1

β+1

(
1

n

) 1
2(β+1)

.

Then with confidence 1− δ,

∥sgn(f)− sgn(fρ)∥2ρ ≤ 4d · aq · (Q log(2/δ))q
(
1

n

) qβ
2(β+1)

,

where Q = 4cκq(2kD)
β

β+1 .
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Remark 3: The theoretical analysises of the multiclass
empirical risk minimization methods in multiclass classifica-
tion have been given in [18]–[20]. In this paper, we use the
vector-valued RLS for multiclass classification, and present
the specific convergence rate of the error bound (most of
the above work only studied the consistency of multiclass
classification, but didn’t give the specific convergence rate
of error bound).

5. Conclusion
The error analysis of the scalar RLS algorithm has been

extensively studied in the literature, but little work has
focused on the error analysis of the vector-valued RLS. In
this paper, we propose the error bounds of the vector-valued
RLS for general operator valued kernels. Furthermore, we
consider to use the vector-valued RLS for multi-class clas-
sification, and derive an error bound for the multi-class
classification problem.

Our analysis extensively uses the special properties of the
square loss function, henceforth it would be interesting to
extend our approach to other loss functions. We think that
our results may be improved by taking into account more
information about the structure of the hypothesis space.
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Appendix.A
Lemma 1 (De Mol et al. [21] Proposition 6): Let H be

a Hilbert space and let ξ be a random variable on (Z, ρ)
with values in H . Assume ∥ξ∥ ≤ C almost surely. Denote
σ2(ξ) = E(∥ξ∥2). Let {zi}ni=1 be independent random
drawers of ρ. For any 0 < δ < 1, with confidence 1− δ,∥∥∥∥∥ 1n

m∑
i=1

[ξi − E(ξi)]

∥∥∥∥∥ ≤ 2C log(2/δ)

n
+

√
2σ2(ξ) log(2/δ)

n
.

Proof: [Proof of Theorem 1] By (4) and (6), we have

fz,λ − fλ =(
1

n
S∗
xSx + λI

)−1

×
{
1

n
S∗
xy − 1

n
S∗
xSxfλ − λfλ

}
.

Note that

1

n
S∗
xy − 1

n
S∗
xSxfλ =

1

n

n∑
i=1

Kxi
(yi − fλ(xi)),

and by the definition (6) of fλ, we have

λfλ = LK(fρ − fλ).

It follows that, for all z = {(xi, yi)}ni=1, and λ > 0,

fz,λ − fλ =

(
1

n
S∗
xSx + λI

)−1

Λ.

where

Λ =
1

n

n∑
i=1

Kxi(yi − fλ(xi))− LK(fρ − fλ).

Since S∗
xSx is positive semidefinite operator, it is easy to

see that

∥fz,λ − fλ∥K ≤

∥∥∥∥∥
(
1

n
S∗
xSx + λI

)−1
∥∥∥∥∥ ∥Λ∥K ≤

1

λ
∥Λ∥K .

Denote random variable ξ = Kx(y − fλ(x)) on (Z, ρ)
with values in HK . According to the reproducing property,
we have

∥ξ∥K = ∥y − fλ(x)∥d
√

∥K(x, x)∥ ≤ κ(D + ∥fλ∥∞),

and

σ2(ξ) ≤ κ2

∫
Z
∥fλ(x)− y∥2ddρ.

Note that the definition of the regression function yields∫
Z
∥f(x)− y∥2ddρ−

∫
Z
∥fρ − y∥2ddρ = ∥f − fρ∥2ρ. (18)

Recall the definition (5) of fλ. Setting f = 0 yields

∥fλ − fρ∥2ρ + λ∥fλ∥2K ≤ ∥fρ∥2ρ.

Hence
∥fλ∥K ≤ ∥fρ∥ρ/

√
λ

and
∥fλ − fρ∥2ρ ≤ ∥fρ∥2ρ ≤ D2.

Recall the Eq.(2), we have

∥ξ∥K ≤κ(D + ∥fλ∥∞) ≤
κ(D + κ∥fλ∥K) ≤
κ(D + κ∥fρ∥ρ/

√
λ) ≤

κD(1 + κ/
√
λ).

By (18), we have∫
Z
∥fρ(x)− y∥2ddρ =∫

Z
∥f(x)− y∥2ddρ− ∥f − fρ∥2ρ ≤∫

Z
∥f(x)− y∥2d.

Setting f = 0, then∫
Z
∥fρ(x)− y∥2ddρ ≤

∫
Z
∥0− y∥2ddρ ≤ D2,
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thus ∫
Z
∥fλ(x)− y∥2ddρ =∫

Z
∥fρ − y∥2ddρ+ ∥fλ − fρ∥2ρ ≤

2D2.

Note that

E(ξ) =
∫
X
Kx

∫
d

(y − fλ(x))dρ(y|x)dρX (x) =

LK(fρ − fλ).

This means that

Λ =
1

n

n∑
i=1

Kxi(yi − fλ(xi))− LK(fρ − fλ) =

1

n

n∑
i=1

[ξ(zi)− E(ξ)].

Using the lemma 1, with confidence 1− δ, we have

∥Λ∥ ≤2κ(D + ∥fλ∥∞) log(2/δ)

n
+

κ

√
2
∫
Z ∥fλ(x)− y∥2ddρ log(2/δ)

n
≤

2κD(1 + κ/
√
λ) log(2/δ)

n
+

2κD

√
log(2/δ)

n
.

If κ/
√
nλ ≤ 1/(3 log(2/δ)), the above estimate can be

bounded further as

∥Λ∥ ≤2κD log(2/δ)

n
+

2κD log(2/δ)√
n

κ√
nλ

+

2κD log(2/δ)√
n

1√
log(2/δ)

≤

6κD log(2/δ)√
n

.

This yields the bound when κ/
√
nλ ≤ 1/(3 log(2/δ)).

When κ/
√
nλ > 1/(3 log(2/δ)), we have

6κD log(2/δ)√
nλ

≥ 2D/
√
λ.

In this case, we use

∥fλ∥K ≤ ∥fρ∥ρ/
√
λ ≤ D/

√
λ,

and the trivial bound

∥fz,λ∥ ≤ D/
√
λ

seen from (4) by setting f = 0. Then there holds

∥fz,λ − fλ∥K ≤ 2D/
√
λ

with probability 1. So the desired inequality also holds in
the second case. This proves Theorem 1.
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